NUWC-NPT Technical Report 11,768
25 September 2006

Computing the Observed Information Matrix
for Dynamic Mixture Models

Michael J. Walsh
Combat Systems Department

- ———
NAVSEA

WARFARE CENTERS
NEWPORT

Naval Undersea Warfare Center Division
Newport, Rhode Island

Approved for public release; distribution is unlimited.



PREFACE

The work described in this report was funded by the Naval
Undersea Warfare Center Division Newport’s In-House
Laboratory Independent Research (ILIR) Program.

The technical reviewer for this report was Marcus L. Graham
(Code 2501).

Reviewed and Approved: 25 September 2006

Ernest Correia
Head (acting), Combat Systems Department




REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
25 September 2006

3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE

Computing the Observed Information Matrix for Dynamic Mixture Models

6. AUTHOR(S)

Michael J. Walsh

5. FUNDING NUMBERS

1176 Howell Street
Newport, Rl 02841-1708

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Undersea Warfare Center Division

8. PERFORMING ORGANIZATION
REPORT NUMBER

TR 11,768

1176 Howell Street
Newport, Rl 02841-1708

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Naval Undersea Warfare Center Division

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

The observed information matrix for an important class of finite mixture models, called dynamic mixture models, is derived in this
report. Dynamic mixture models are useful probability models for random data originating from a number of distinct moving
sources. The multiple-target tracking problem is one application of these models. For these models, the inverse of the observed
information matrix is a consistent estimate of the error-covariance matrix for the mixture parameters.

Measurement-to-source assignment uncertainty is unavoidable in these problems, and increases as the distance between sources
in the sample space decreases. The observed information matrix computations presented here account for this uncertainty by
subtracting the information in the unobserved assignments, treated as missing data, from the information in the expected complete
data sample. Two target tracking examples are given that demonstrate these computations for the linear Gauss-Markov mixture
model for multiple target tracking. In each case, the consistency of the resulting error-covariance matrices is examined.

14. SUBJECT TERMS

Dynamic Mixture Model; Expectation-Maximization; Finite Mixture Model; Gauss-Markov Process;
Gaussian Mixture; Kalman Filter; Kalman Smoother; Multiple Target Tracking; Multivariate Linear
Model; Observed Information Matrix; Probabilistic Multi-Hypothesis Tracking

15. NUMBER OF PAGES
88

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

SAR

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102







Section

1.1
1.2

2.1
2.2
2.3

3.1
3.2
3.3

4.1
4.2

5.1
5.2

6.1
6.2

7.1
7.2
7.3

TABLE OF CONTENTS

Page
LISTOF ILLUSTRATIONS . . . . . . . e e e iii
LISTOFTABLES . . . . . . . e e e e e iv
INTRODUCTION . . . . e e e e 1
Related Work . . . . . . . . 2
ReportOrganization . . . . . . . . . . . . . . . . e 7
MAXIMUM LIKELIHOOD ESTIMATION USING THEEM METHOD . ... 9

General Case . . . . .. e 9
Independent Observations . . . . . . . .. ... .. ... .. ... 0., 10
MaximumA PosterioriEstimation . . . . . . . . ... ... 10

OBSERVED INFORMATION FOR INCOMPLETE DATA PROBLEMS . . . .13

GeneralCase . . . . . . . . . . e 13
Independent Observations . . . . . . . . . . . . .. . .. .. .. 15
Posterior Observed Information . . . . . . . . .. ... .. ... ... .. .. 17
OBSERVED INFORMATION FOR FINITE MIXTURE MODELS . . ... .. 19
GeneralCase . . . . . . . . . .. e 19
Gaussian Mixtures . . . . . . ... e e 20
OBSERVED INFORMATION FOR DYNAMIC MIXTURE MODELS . . . .. 25
Deterministic Motion . . . . . . . . .. ... L e 25
StochasticMotion . . . . . . . . .. 31
THEORETICAL AND PRACTICAL CONSIDERATIONS . . . . . . . ... .. 41
Asymptotic Normality off . . . . . . . . ... 41
Sequential Versus Batch Processing . . . . ... ... ... .. ...... 41
EXAMPLES . . . . . . 45
Estimator Consistency . . . . . . . . ... 45
Two Crossing Targets . . . . . . . . . . 48
Single TargetinClutter . . . . . . . . . .. ... .. ... .. .. 58



8.1
8.2
8.3

CONCLUSIONS . . . . e e 65

Summaryof Findings . . . . . .. ... .. ... 65
Alternative Approaches . . . . . . . . . . . e 65
Future Investigations . . . . . . . . . . . .. e 67

APPENDIX A - APPROXIMATION TO THE OBSERVED INFORMATION

MATRIX . A-1
APPENDIX B - INVERSE OF THE GAUSS-MARKOV PRIOR

COVARIANCE MATRIX . . . . . B-1
APPENDIX C - ADDING ACLUTTER MODEL TOPMHT . . . . ... ... C-1
REFERENCES . . . . . . . . R-1



Figure

10

11

12

13

LIST OF ILLUSTRATIONS

Page

Distance Between TargetsanDimension in Units of Measurement Standard

Deviation for Crossing Targets Example . . . . . .

. 50

Average NEES with 95% Acceptance Region for Crossmg Tat‘gm:snple

with Batch Length25 . . . . . .. .. ... . ... ... ... .....
Average NEES with 95% Acceptance Region for Crossing Takgedsnple
with BatchLength10 . . . . . . . . ... ... ... ... ... .....
Average NEES with 95% Acceptance Region for Crossing Takgeasnple
with BatchLength5. . . . . . . . ... ... ... .. ... .......
Average NEES with 95% Acceptance Region for Crossing Tageasnple
withBatchLength 1. . . . . .. ... ... ... ... .. ........
K, CVM, and AD Statistics with 95% Acceptance Regions for CirggJar-
gets Example with Batch Length25 . . .. .. ... .. ... .....

K, CVM, and AD Statistics with 95% Acceptance Regions for CirggJar-

gets Example with BatchLength10 . ... ... ... ... ........ 4.5

K, CVM, and AD Statistics with 95% Acceptance Regions for CirggJar-
gets Example with Batch Length5 . . . . ... ... ... .......
K, CVM, and AD Statistics with 95% Acceptance Regions for CirggJar-

gets Example with Batch Length1 . . . . . . ... ... ... ... ..../| 6.5

Average NEES with 95% Acceptance Region for Single Targ€lutter Ex-
ample with Batch Lengths25and10 . . . . . . . . . . ... ... ...
Average NEES with 95% Acceptance Region for Single Targ€lutter Ex-

ample with Batch Lengths5and1 . . . . . .. ... ... .. ... ......

K, CVM, and AD Statistics with 95% Acceptance Region for $ngarget
in Clutter Example with Batch Lengths 25 and 10 .

K, CVM, and AD Statistics with 95% Acceptance Reglon for $en§arget

in Clutter Example with Batch Lengths5and1 . ... .. ... .. ..



Table

LIST OF TABLES

Page
Percentage of NEES, K, CVM, and AD Values That Fall Within if Iie-
spective 95% Acceptance Regions for the Crossing Targets jidgam. . . . . 57
Percentage of NEES, K, CVM, and AD Values That Fall Within iFIe-
spective 95% Acceptance Regions for the Single Target in€@l&tample . . 63



COMPUTING THE OBSERVED INFORMATION MATRIX
FOR DYNAMIC MIXTURE MODELS

1. INTRODUCTION

Mixture distributions are widely used in statistical arsa¢yto model data originating
from a number of distinct sources. In these models, eacltsagirepresented by a component
of the mixture. The distance between the sources in the sasmalce determines both the
level of difficulty of estimating the mixture parametersgdahe amount of uncertainty in the
parameter estimates. Intuitively, the uncertainty asdedi with assigning measurements to
sources should increase as the distance between the soutbessample space decreases.
This report is concerned with accurately assessing theastn error in mixture estimation
problems for which measurement-to-source assignmenttanty is a major contributor to
uncertainty in the data.

Mixture estimation can be treated as a missing data probleererthe missing data are
the measurement-to-source assignments. Consequentgxbetation-maximization (EM)
method of Dempster et al. [1] provides a convenient iteeagipproach for finding maximum
likelihood estimates of the mixture parameters. Indeedture estimation is one of the
numerous applications of the EM method discussed in thgempalrhe EM method is most
useful in situations where the corresponding complete (aa observed data + missing
data) problem has a straightforward solution. Gaussianumgxestimation is one example.
In this case, application of the EM method yields a sequeheemhted linear least-squares
estimates for each of the Gaussian mean vectors that centetgeir maximum likelihood
estimates. Gaussian mixture models have been studiedsesxdlyrby many authors (see, for
example, the monograph by McLachlan and Basford [2] and tlezereces therein) and are
the basis for the more complex mixture models considereel her

The main criticisms of the EM method are that it does not giveranediate expression
for the error-covariance matrix for the estimated parametad that it converges slowly near
the solution (in contrast to gradient-based techniquessiwét least approximate the error-
covariance matrix for the parameter estimates, and oftamecrge rapidly near the solution).
Louis [3] addresses both criticisms in his paper on findirggdhserved information matrix
when using the EM method for incomplete data problems. Imphjger, Louis shows that
the observed information matrix, defined as minus the sedeniglative of the observed (or
incomplete) data log-likelihood function, evaluated a thaximum likelihood estimate, is
obtained by straightforward manipulations of the comptktta log-likelihood function. The
inverse of this matrix can then be used as an estimate of the@variance matrix for the



estimated parameters, as suggested by Efron and Hinklelf4thermore, Louis shows that
the observed information matrix can be used to accelerateecgence of the EM iterations.

In this report Louis’s results are applied to an importaasslof mixture models termed
“dynamic mixture models.” A dynamic (or time-varying) mixe model constitutes a se-
guence of standard mixture distributions related in tima pyocess model. Dynamic mixture
distributions are used to model data collected over timgiraiting from a number of distinct
movingsources. (Here, source motion refers to a change over timeytharacteristic of
the source—for example, location, orientation, and intgnslif the sources are stationary,
one can pool data collected over multiple sampling timesues®da standard (static) mixture
to describe the sample distribution. However, if the sosigr@ non-stationary, one must ac-
count for source motion in the mixture to accurately modeldrstribution of the sample at
each sampling time. A dynamic mixture model may be detestimpr stochastic. In the
former case, a parametric motion model is used to descrié&diectory of each source in
the mixture. In the latter case, the trajectory of each sigtreated as a sequence of random
variables whose mean evolves according to a determinisitommodel. In either case, the
objective of this report is to compute the observed inforamainatrix for the estimated mix-
ture parameters, and to assess the quality of this mattixn@re precisely, the inverse of this
matrix) as a characterization of estimation error.

1.1 RELATED WORK

Work related specifically to computing the observed infdioramatrix for dynamic
mixture models—and, more generally, to assessing the ingbaceasurement-to-source as-
signment uncertainty on estimation error—is found in bb#hdtatistics and engineering liter-
ature. One paper from the statistics literature is pawitylrelevant. In [5], Meng and Rubin
propose the supplemented EM (SEM) algorithm as an altemagpproach for computing
the error-covariance matrix for parameter estimates onbthusing the EM method. Their
approach, in contrast to Louis’s analytical approach, Igdrelytical and half numerical. In
short, the SEM algorithm requires analytical differentiatto obtain the information matrix
associated with the complete data, but uses numericatdiffiation to compute the informa-
tion matrix associated with the missing data. The diffeedmetween these two matrices is the
observed information matrix, which is then inverted to aiothe error-covariance matrix. For
problems where the algebraic analysis required by Lourgsgxlure is tedious or intractable,
the SEM algorithm is an attractive alternative.

Two other papers from the statistics literature are wortmtioaing. Green [6] dis-
cusses the EM method in the context of maximum penalizetiiiked estimation (mathe-
matically equivalent to maximura posterioriestimation), a problem for which he laments
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the EM method has seen little use. In his paper, Green makegpiesnodification to the EM
algorithm for maximum penalized likelihood estimation tatan the one-step-late (OSL) al-
gorithm, which is often easier to compute and convergesaat l@s quickly. Green’s paper
is relevant to this discussion because the estimation @nolbr stochastic dynamic mixture
models is a maximuna posteriori estimation problem for which the OSL algorithm may
be potentially useful. In a later paper, Segal et al. [7] comlthe results of Meng, Rubin,
and Green to compute error-variances via the SEM algoritmmiaximum penalized like-
lihood estimates obtained using the OSL algorithm. Thepragch is directly applicable to
computing the error-covariance matrix for stochastic dyicamixture models. However, this
report will show that the algebraic analysis required byiksuapproach yields insightful ex-
pressions for the particular stochastic dynamic mixturel@hconsidered here—namely, the
linear Gauss-Markov model.

In the engineering literature, and the target trackingdiigre in particular, related work
falls into three overlapping categories: mixture modetsnailtiple target tracking, informa-
tion reduction factors for single target tracking in clattend minimum variance (Cragn
Rao) bound calculations for tracking performance predictithe report by Streit and Lugin-
buhl [8] and the paper by Gauvrit et al. [9] are the primargrehces for the mixture model
approach to multiple target tracking considered in thiorepln this approach, each target
is represented by a component (or possibly a collection ofpaments) in a mixture model
for the measurement distribution. By the very nature of thiglat, it is assumed that every
measurement originates from all the targets; more prggisath measurement is assigned to
every target with a certain probability. This unorthodacking model is a contradistinction
to the widely accepted multiple hypothesis tracking (MHTQdal proposed by Reid [10], in
which each measurement is assigned to one and only one,target clutter (background
noise). While the MHT assignment model is perhaps more t&alisleads to a set of track
hypotheses that grows exponentially with the number of oremsents. Consequently, MHT
algorithms require sophisticated heuristics to managetmgsis enumeration, which typi-
cally involves pruning and merging branches on the hypathese. Alternatively, the mix-
ture model algorithms have complexity that is roughly lineghe numbers of measurements
and targets; thus, hypothesis management is not requirdddse algorithms. However, as
succinctly put by Streit in [11], the price to be paid for theefesy” of violating the one-
measurement-per-target rule of multiple target tracksg likelihood function that may be
“riddled” with local maxima. Streit goes on in [11] to blench@xture model with “limited
enumeration” to address this problem.

The stochastic dynamic mixture model discussed in thisrtepprecisely the mixture
model used by Streit and Luginbuhl [8] and Gauvrit et al. [®] multiple target tracking.
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Streit and Luginbuhl call the approach “probabilistic mlgpothesis tracking (PMHT).”
Of these works, only the former considers computation ofettier-covariance matrices for
the track estimates. However, the analysis of Streit andriugpl is incomplete in that the
matrices identified in their report as the error-covariamegrices for PMHT do not account
for the information lost to the missing data. Hence, whaehascome widely accepted as the
error-covariance matrices for PMHT are incorrect and, e/oas will be shown in this report,
are overly-optimistic. This report gives a precise staidtinterpretation of these matrices
and derives expressions for the correct error-covariarateices for PMHT that account for
the information lost to the missing data.

Two additional approaches related to PMHT must also be aelenlged. Avitzour’s
work [12], a remarkably similar but independent antecetie®MHT, is perhaps the first ap-
plication of missing data and EM to multiple target trackiii@ne similarities and differences
between the two approaches are discussed in [8]; notablydPBubstitutes a stochastic
(Markovian) motion model for the deterministic (polynomienotion model of Avitzour’'s
approach. Also, Avitzour does not discuss computationirerovariance matrices for track
estimates. The multiple target tracking approach propaseiMolnar and Modestino [13]
also uses missing data and EM, although their measureméatget assignment model is
markedly different than that of Avitzour’s or PMHT’s. Neteeless, Molnar and Modestino
propose an approximation to the error-covariance matrigfe target state estimates that ex-
plicitly accounts for measurement-to-target assignmegettainty. In their approximation,
each measurement’s contribution to the total informatmmtent of all the measurements with
respect to each target is scaled by the measurement-&t-tegignment probability. Neither
the development nor the quality of this approximation i€dssed in [13].

The notion that measurement assignment uncertainty iRitrgshould increase the
variance of the track estimates is not new. For example, 4f Fbrtmann et al. analyze
the effect of clutter on the update of the target state camag matrix. Specifically, they
consider a deterministic approximation to the stochasatrimn Riccati equation associated
with the probabilistic data association (PDA) filter of Bara®m and Tse [15]. (Recall that
the matrix Riccati equation of Kalman filtering theory is auesion for the update of the
state covariance matrix.) This approximation, which reptathe random (data-dependent)
guantities in the stochastic matrix Riccati equation withitrexpected values, leads to a
modified matrix Riccati equation that looks like the standagdation, with the addition of
a scalar factor in front of the Kalman gain term. This scadatdr, called the information
reduction factor and denoteg in their paper, takes values between 0 and 1; these extremes
correspond to total assignment uncertainty and no assighomeertainty, respectively. A

*Note that the critical term in this approximation (the ternbrackets in [13, equation (48)]) is missing an inverse.



value ofg, = 0 eliminates the Kalman gain term, so that the updated statEriemce matrix
equals the predicted state covariance matrix; a valug ef 1 reduces the modified matrix
Riccati equation to the standard equation, so that the ugpdédée covariance matrix is equal
to the minimum state covariance matrix. The informationun factorg, is a function
of the probability of detectior, and the probability of false alariix 4, with ¢ = 1 when
Pp=1andPry = 0,and0 < ¢, < 1 whenPp < 1andPr, > 0. In short, the information
reduction factor accounts for measurement assignmenttanug due to missed detections
and clutter. Computation af is nontrivial, and is described by Gelfand et al. in [16].

The most commonly used baseline for judging target track@rfprmance is the Cragn-
Rao lower bound (CRLB), that is, the minimum variance bound omeasibn error. Recall
that the CRLB is defined in terms of an average (expectation) algossible values of
the observed data. Hence, for any given tracking model, theBC&dn be used to predict
tracking performance in the absence of measurements. Thiplatarget tracking problem
complicates computation of the CRLB, since the measuremetarget assignments are al-
most never observed. The approach then is to marginalizé¢lowassignment hypotheses and
compute the minimum variance bound based on the marginaibdison of measurements
and target states. This is the approach presented by Daub?]inAs described by Daum,
computation of this marginal is impractical, as the numberssociation hypotheses is enor-
mous even for small problems. To address this problem, Dawawvides a family of lower
bounds on the minimum variance bound, where each membee ddthily corresponds to a
collection of association hypotheses that include theembhrypothesis. The lower bound cor-
responding to the set of all possible hypotheses corresporttie minimum variance bound,
whereas the lower bound corresponding to the subset th&tineanly the correct hypothesis
corresponds to the trivial lower bound, which ignores meament assignment uncertainty
entirely. Thus, tighter bounds can be achieved at the expafriomputational complexity by
considering progressively larger sets of association thgses.

Further approximations to the CRLB when there is measurenssigranent uncer-
tainty have been computed by Jauffret and Bar-Shalom [18Kamudbarajan and Bar-Shalom
[19] for tracking a single target in clutter. Both works use #pproach of Fortmann et al. [14]
to show that the Fisher information matrix (FIM) for this ptem is a scalar multiple of the
FIM for the problem without clutter, where the scalar muéigs the information reduction
factor ¢, developed in [14]. It follows that the CRLB (inverse of the FIMEreases rapidly
with the amount of assignment uncertainty and, in fact, grewithout bound ag, — 0.
Subsequent papers by Willett and Bar-Shalom [20] and Niu. 23] extend these results by
finding a set of sufficient conditions for the class of modetssingle target tracking in clutter
whose CRLB takes this form.



Another set of references relevant to this report deal with BRamputations for the
mixture model approach to multiple target tracking. In [2REerlovsky develops explicit
CRLB expressions for the parameters of a normal (Gaussianyiraimodel of the measure-
ment distribution for tracking multiple targets in cluttefhis work is based on his earlier
paper [23] on computing the CRLB for normal mixtures. While the BRixpressions de-
veloped in these papers are indeed explicit, they are writiderms of quantities (“class
overlap” terms) that ultimately require numerical evaiomatof multi-dimensional integrals
(expectations over all values of the observed data), wihere tare as many integrals as there
are observations, and each integral has dimension equhabtmt a data point. Le Cadre
et al. [24] address the same problem in their paper on congptitie CRLB for the multi-
ple target version of a classic subject in the trackingditiere known as bearings-only target
motion analysis. As in Perlovsky’s papers, the class opestd'source interaction” terms in-
duced in the CRLB expressions by the mixture model for measeméto-target assignment
lead to integrals that cannot be evaluated in closed formoigrthe contributions in [24]
are analytical approximations to these integrals basednassexpansions. In [25], Hue et
al. derive recursive formulas for computing the “postérioRLB for multiple target track-
ing assuming stochastic (Markovian) target motion andetkifferent measurement-to-target
assignment models—namely, the known assignment modebrtireneasurement-per-target
model, and the PMHT model. The posterior CRLB for the PMHT maslelosely related
to the posterior observed information matrix derived irs tl@port; specifically, the posterior
CRLB is the inverse of the expected value of the posterior médion matrix over all values
of the observed data and all values of the target states.eTdgxectations are evaluated in
Hue et al. [25] using Monte-Carlo integration techniquestality, Hue et al. show that mea-
surement assignment uncertainty raises the posterior lbawend on estimation error, often
substantially. Analogous results are obtained in this mepith regard to the impact of mea-
surement assignment uncertainty on ihesitu assessment of estimation error given by the
inverse of the posterior observed information matrix.

The work most relevant to the present discussion among ¢hisfseferences is the
report by Graham and Streit [26], which discusses comprtaif the CRLB for PMHT and
which shows that the Fisher information matrix for PMHT isuabjto the Fisher informa-
tion matrix derived from the complete data likelihood fuant minus the information matrix
associated with the missing data (measurement-to-tasgejranents). This result is a man-
ifestation of the “missing information principle” to be disssed in more detail later in this
report. Thus, the complete data lower bound obtained byrtimgethe complete data Fisher
information matrix, which Graham and Streit show to be btd&gonal, is a lower bound
on the CRLB. This lower bound on the lower bound, they argue, aogious to the trivial
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lower bound of Daum’s approach. The present report is notewred with the computation
of the Fisher information matrix and the minimum varianceitd, which are independent
of observed data, but rather with the observed informatiatrismand its inverse, and their
assessment of estimation accuracy as a function of the merasnts. Furthermore, explicit
closed-form expressions for the complete data and missitegaformation matrices, in terms
of the maximum likelihood estimates for the mixture parasrgtare derived.

Finally, a recent paper by Cai et al. [27] presents an EM dlgarior tracking maneu-
vering targets in clutter, and uses the SEM algorithm to admthe error-covariance matrix
for the estimated target parameters. Theirs appears tebeghuse of the SEM algorithm in
the tracking literature. In fact, their algorithm is essalhy Avitzour’s algorithm with posi-
tion and amplitude measurements. Hence their paper carttagrfirst accurate computation
in the literature of the error-covariance matrix for a PMHTated algorithm. In contrast, the
error-covariance matrix for PMHT is computed in this repging the analytical approach of
Louis. The benefit of Louis’s approach in this case is thaiviég precise statistical meaning
to certain quantities fundamental to the PMHT computattbas have often been incorrectly
interpreted as the error-covariance matrices for PMHT.

1.2 REPORT ORGANIZATION

To establish terms and notation used throughout this refr@tEM method for maxi-
mum likelihood estimation for incomplete data problemsitsdduced in section 2. In section
3, Louis’s derivation of the observed information matrix tbe general case of incomplete
data is summarized, and a simplification of his expressionshie special case of indepen-
dent observations is presented. Also in this section, teeepior observed information matrix,
which is used to compute the error-covariance matrix forlsigtic dynamic mixture models,
is defined. In section 4, maximum likelihood estimation foité mixture models using the
EM method is reviewed, and general expressions for the ggoreding observed information
matrix are presented. Expressions for the maximum likelthestimates and the observed
information matrix for Gaussian mixture models are als@giin this section.

The observed information matrix and the posterior obsemidmation matrix for the
deterministic and stochastic dynamic mixture models,a@esyely, are derived in section 5.
In both cases, the maximization step at the final EM iterasoshown to be equivalent to a
standalone estimation problem for which the error-covenx@amatrix is given by the inverse
of the complete data information matrix in the case of deteistic motion, and the inverse
of the posterior complete data information matrix in theecasstochastic motion. The latter
result provides a precise statistical interpretation efdhror-covariance matrices obtained as
byproducts of PMHT for the linear-Gaussian case.



Section 6 discusses the suitability of the inverse of thentesl information and poste-
rior observed information matrices as estimates of tha-@wwariance matrices for the deter-
ministic and stochastic dynamic mixture models, respelgtiand the cost of computing these
inverses when the number of sampling times is large. Se€tiocludes two target tracking
examples using the stochastic dynamic mixture model, ot@mtrossing targets, and one
of a single target in clutter. The consistency of the targeameter estimates is examined for
each example. The report concludes in section 8 with a sugnaidindings, a discussion of
alternative approaches for computing the observed infoomanatrix, in particular the SEM
algorithm, and a discussion of topics for future invesimat



2. MAXIMUM LIKELIHOOD ESTIMATION USING THE EM METHOD

21 GENERAL CASE

Consider the general incomplete data problem in which thexéveo sample spaces,
the complete data sample spatieand the incomplete (or observed) data sample space
and a many-to-one mapping : X — ). Letz denote an arbitrary point iA’. The point
x is not observed directly; rather, the poipt= Y'(z) in ) is observed. Assume a family
of density functionsfx (z;#) on X indexed by the parameter vectbfrom a space). Let
L = {z : Y(z) = y} denote the section ot determined by. The corresponding family of
observed data density functioyis(y; #) on) is given by

fr(y:0) = /L fx(@:0) da, (2-1)

where integration here is meant in the most general sense.

For a fixed samplg, the density functiorfy (y; #) taken as a function of the parameter
vectord is the incomplete or observed data likelihood function. Aety; ) = log fy (y; 6)
denote the observed data log-likelihood (or support) fionctThe maximum likelihood es-
timate of the parameter vectéy denoted), is that value of) in the spacé) that maximizes
fv (y; 6) or, equivalently\y (y; 0) for the given sample; that is,

6 = arg max Ay (y;6). (2-2)

Let \x(z;0) denote the complete data support function for a fixed samplésing the EM
method, the maximum likelihood estimatefoik obtained by solving the following sequence
of complete data problems:

O+ = arg max Eym[Ax(X;0)| X € L] (2-3)
fork=0,1,..., whered®) is an initial estimate o, and
oo Dy (X:0)| X € I] = / M (2:0) oy (aly: 0% da (2-4)
L

is the conditional expectation of the complete data suppoudtion at thekth iteration. As-
suming that the observed data density functifyngy; ) are strictly positive, the conditional
density functionsf x|y (x|y; 0) are defined by

_ fx(z;0) _ fx (@ 0)

B fY(y§9) B fL fX(ﬂf;Q) dx
Expressions (2-4) and (2-3) are the expectation step, ¢ef-and the maximization step, or
M-step, respectively, of the EM method. The sequetiteof EM iterates converges to the

fxpv (2ly; 0) (2-5)
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maximum likelihood estimaté under the regularity conditions stated in Dempster et gl. [1
and Wu [28]. These conditions are assumed to hold here aodghout the report. The usual
regularity conditions for the existence of maximum likeldd estimates and information ma-
trices, and the interchangeability in order of differetitin and integration, are also assumed
in the sequel. (See, for example, C&ni29, chapters 7, 32, and 33] and Casella and Berger
[30, chapters 2 and 7] for statements of these conditions.)

2.2 INDEPENDENT OBSERVATIONS

Suppose the complete dataonsists of: independent (but not necessarily identically
distributed) samples,, ..., z,. These samples are not observed directly; rather, the sampl
y1 = Yi(x1),...,yp = Y,(x,) through the many-to-one mappings : X1 — )i, ...,

Y, : X, — V,. Then,L = Ly x --- x L,, whereL; = {z : Y;(z) = y;} is the section of
X; determined by);. Consequently, the complete data and observed data likelifumctions
fx(z;0) and fy(y; 0) become products, and the corresponding support functigiis; 0)
and\y (y; #) become summations. Substituting these results into (2@)rderchanging the
order of integration and summation gives

g+ — arg max Z Eoo [Ax, (Xi;0) | X; € Lij (2-6)
i—1

for the update of the parameter vectt, where
Eym[Ax,(Xi;0) | Xi € L) = / Ax, (7450) Fxipy (wilys; 0P da; (2-7)
L;
is the conditional expectation of the support function fog tomplete data vectar; at the
kth iteration, and
in(xi;e) _ in(xz‘;@)
frilyis0) [ fx(@i50) da;

is the conditional density function af given the observed data vectgr

Ixiyi (wilyi; 0) = (2-8)

23 MAXIMUM A POSTERIORIESTIMATION

The EM method can also be used to find the maxinauposterioriestimate of) in a
Bayesian model for the parameter vector. @alenote the random variable associated Wjth
let fo(#) denote its prior density function, and let(0) = log fo(6) denote the prior support
function. The posterior observed data support funclign (6|y) = log fev (f|y) is obtained
using Bayes’ formula:

oy (0ly) = Avie(y]0) + Ao (0) — Ay (y)- (2-9)
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The observed data support functiag (y; ¢) is written in this expression asy|e(y|f) to
emphasize Bayesian conditioning rather than parametrierdgce od. The maximuma
posterioriestimate of), denoted), is that realization of the random varialtdthat maximizes
fey (0ly) or, equivalently\ey (f|y), given the sample; in other words,

0 = arg max Aejy (f|y) = arg max {Aie(yl0) +2e(0)} - (2-10)

As discussed in [1], the maximuenposterioriestimate of) is obtained using the EM method
by solving the following sequence of complete data problems

o+ = arg max {Eow[Mxo(X10) | X € L] + o (0)} (2-11)

for k = 0,1,..., whered® is an initial estimate of, and\xe(X|0) is the complete data
support function conditioned ah The arguments in [1] and [28] imply that each EM iteration
increases the value oy (A|y). Also, as stated in [1], whefy (¢) is a natural conjugate prior
density function fol©, the function to be maximized in (2-11) often has the samm fas that

in (2-3) and, so, can be maximized in the same way. This isiddiee case for the Gaussian
mixture models discussed later. (Recall that a natural gatguprior density function fo®
has the property that the posterior density function is a begrof the same family of density
function. See Redner et al. [31] for a discussion of a natwnatilfy of priors, which they
refer to as a family of “class conditional” priors, for mixés of density functions of the
exponential type.)
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3. OBSERVED INFORMATION FOR INCOMPLETE DATA PROBLEMS

Louis’s approach to computing the observed informationrixdor the general case
of incomplete data is presented in this section, as well ampliication of his result for
the special case of independent observations. The pastdrgerved information matrix,
used here as an information measure for stochastic dynairiane models, is also defined.
Throughout this section, the observatipis assumed given.

3.1 GENERAL CASE

Before deriving the observed information matrix for the gahease, some additional
notation and useful identities are presented. (The nataiitwpted here follows Louis’s, with
a few differences. His derivation is found in the appendif3df) Let Sx(x;0) and Bx(x;6)
denote the first derivatives and negative second deriiwh respect to the parameter vec-
tor 6 of the complete data support functiag (z; 6), respectively. Likewise, lety (y; 0) and
By (y; 0) denote the corresponding derivatives of the observed dgaost function. (The
functionsSx (x; 0) andSy (y; 0) are often referred to as the complete data and observed data
score functions, respectively.) These definitions leatiéddllowing identities:

Sx(ait) = Mlaif) = L, (3-1)
(6
fx(x;0)

Taking the conditional expectation of these expressioms ¢&4) yields the identities

—Bx(z;0) = Ny(:0) = Sx(x;0)S% (:0). (3-2)

E, {%p{ € L] = Ey[Sx(X:0)| X € L], (3-3)
E, {%p{ € L] = —Ey[Bx(X;0)| X € L]
+Ey [Sx(X;0)Sy(X;0)| X € L] . (3-4)

Theinformation matrix denotedly (y; #), is by definition equal to minus the second
derivative with respect to the parameter ve¢af the observed data support function:

Iy (y;0) = =Ay-(y;0) = By (y;0). (3-5)

Evaluated at the maximum likelihood estimét¢he information matrix is called thebserved
information matrixor, sometimes, thebserved Fisher information matrixThe expected
(Fisher) information matrixs defined as the expected value of the information méiriy; 0)
evaluated at the “true” value of the parameter veéiatenoted*; that is,

1(07) = /y Iy (y;:0%) fy (y;6%) dy. (3-6)
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(See Edwards [32] for statements of these definitions.) dotpre, the inverse of the expected
value of the information matrix evaluatedétthat is,/~*(6), is often used as an estimate of
the error-covariance matrix féx However, Efron and Hinkley [4] give several justifications
for preferring the inverse of the observed information imamamely, 15 (y; 0), as a mea-
sure of estimation uncertainty, at least for the scalarmatar case. As noted by Louis, the
observed information matrix is often much easier to comphaa the expected information
matrix. This is certainly the case for mixture distributson

The information matriXy (y; ) as given by (3-5) is often difficult to compute explicitly
due to the complexity of the observed data support funclipfy; ). Indeed, it is for this
reason that the EM method is often used in the first place. ©aéaf the EM method is to
obtain an expression for the maximum likelihood estint&iteterms of the simpler complete
data support functionx (x; #). Likewise, the goal here is to obtain an expression{dy; ¢)
in terms of the complete data support function and its davies.

To derive the information matrik (y; ¢) in terms of the complete data statistis(z; 0)
andBx (z; 0) requires two steps. The first step is to compute the implavivdtive of the ob-
served data support function. From (2-1),

Sy (y;0) = My ( /fxxﬁdm//fxxé (3-7)

Moving the denominator inside the integral in the numeratoat multiplying the numerator
and denominator of the integrand Iy (z; 6), it follows from (2-5) and (3-3) that

Sy(y;0) = Eq [Sx(X;0) [ X € L], (3-8)

where the conditional expectation is defined as in (2-4). 3é®ond step is to implicitly
compute the negative second derivative of the observedsdatzort function. From (3-7),

Br(yi0) = X/ (4i0) = — [ Jh(wi0)ds / [ Ity de+ sy (0sTw0). 39

Again, moving the denominator inside the integral in the etator and multiplying the nu-
merator and denominator of the integrandfy(z; 0), it follows from (3-4) and (3-5) that

Iy(y;0) = Ey [Bx(X;0) | X € L] — Ep [Sx(X;0)S%(X;0) | X € L] + Sy (y; 0)Sy (y; 0).

(3-10)
By definition, the derivative of the observed data supportfiem is zero at the maximum
likelihood estimate, that isSy (y;6) = 0. Thus, the observed information matrix in the
general case can be expressed entirely in terms of conalitexpectations of the complete
data statistic$x (z; ¢) and Bx (x; 0):

I(y:0) = By [ Bx(X;8) | X € L] - B; [sx(X;0)ST(x;0) | X e R] . (311
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These expectations are straightforward to compute for tite fand dynamic mixture models
considered in this report, and they result in intuitive aadaling expressions for the observed
information and error-covariance matrices for these nsdel

The first term on the right-hand side of (3-11) representgiioeemation in the complete
data; the second term is a correction for the informatiohtm$he missing data. To see this,
recall expression (2-5) for the conditional densftyy (z|y; #) of the complete data random
variable X giveny. Let Axy(z|y;0) = log fxy(z|y;#). Taking the natural logarithm of
(2-5) and rearranging terms gives

Ay (43 0) = Ax(2;0) — Axpy (z]y; 0). (3-12)

Furthermore, taking the conditional expectation as in)(@f¥4minus the second derivative of
this expression and evaluating the result at the estithgiees

Iy(y:0) = By | Bx(X:0)| X € L] = By |=Axy(Xly:0)| X € L (3-13)
for the observed information matrix. This result is writrccinctly as
Iy (y;0) = Ix(:0) = Ly (x]y; 0), (3-14)

where, by analogy with definition (3-5), the matdxg(:z:'é) is called the (conditional ex-
pected) complete data observed information matrix, Bad(x|y; 0), the observed informa-
tion matrix associated with the missing data. (For brebity,with some abuse of terminology,
these matrices will be referred to as the complete and ngigsformation matrices, respec-
tively.) Clearly, the observed information decreases asrtftgmation lost to the missing
data increases. Consequently, the error-covariance nfatrtke maximum likelihood esti-
mated (taken here to be the inverse of the observed informatiomix)atcreases with the
information lost to the missing data. As pointed out by Lothe factorization (3-14) is an
application of what Orchard and Woodbury [33] call the “rnmgsinformation principle” to
the observed information matrix.

3.2 INDEPENDENT OBSERVATIONS

In this case of independent observations, the completeasatabserved data support
functions Ay, Ay and their first and second derivatives, Sy and —Bx, —By become
summations, and expression (3-11) for the observed infiomanatrix becomes

Iy(y; 0) = Z E; [Bxi (X;;0)| X; € Ri] -3 5 [sxl. (X::0)ST (X130)| X, € Li]
j =1

_22 Z [SX (Xi:0)| X, eL] é[s;j(xj;énxjezaj] (3-15)

=1 j=1+1
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This expression from Louis [3] simplifies further in the falling way. SinceSy (y;0) = 0,
it follows from (3-8) that

i E; |:SX1‘ (Xi;0)| X, € Li] = 0. (3-16)

=1
Hence, solving for theth term,
By |Sx(Xeh) | Xie L) == > B|Sx,(Xi0)|X,eL;].  (@17)
J=1, j#i

By straightforward algebraic manipulation, it is easy towhusing these identities that

E [SX(X; 0)ST(X:0)| X e R} - En: E [Sxi(Xi; 0)ST (X::0)| X, € LZ}

i=1

=" By [Sx(X:0) | X, € L] By [ST(X:0)| X € Ry| . (3-18)
i=1
Thus, the observed information matrix in the case of inddpahobservations becomes

(i) = 3 By [Bx(Xis8) | X € R =37 B [Sx (X 0)ST,(X::) | X € L]

i=1 i=1

+ i E, [Sxi (X:;0)| X; € LZ} E, [s}i(xi; 0)| X; € Rj} . (3-19)
=1

This simplified expression eliminates the double sum owerctbss terms in (3-15).

Finally, for independent and identically distributed ddke observed information ma-
trix Iy (y; ) can be approximated by tleenpirical Fisher information matrpdenoted, (y; 6),
and defined a$,(y; 0) = nl.(y; §), where

_ I & 1
Le(y,0) = = > Svi(is 0)97, (433 0) = —5 Sy (y:0) S5 (3:0) (3-20)
=1

is the empirical (sample) covariance matrix of the scordorscSy, (y;;6). (Recall that if
the data are identically distributed, the score functiSpsare all the same function.) Since

~

Sy (y;0) = 0, it follows that
Le(y;0) = Svi(y::0)Sy, (v 0). (3-21)
=1
Using relationship (3-8), the empirical Fisher informatimatrix can be written in terms of
conditional expectations of the complete data score fansti

Ie(%é) = Z Eé[SXi(Xi;é) | X € L] Eé[S)TQ(Xi;é) | Xi € Li]. (3-22)

i=1
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The appropriateness of this approximation to the obsenfedmation matrix depends on the
size of the data set, as discussed in appendix A. See Redn&valker [34] and Meilijson
[35] for a complete discussion of the empirical Fisher infation matrix and its use in the
EM method.

3.3 POSTERIOR OBSERVED INFORMATION

By analogy with the definition of the information matrix (y; ¢), the posterior infor-
mation matrix/ey (f|y) is defined as minus the second derivative with respeétadthe
posterior observed data support functiag)y (6]y). From (2-9),

Loy (0ly) = =Xy (Bly) = —Ayie(y10) — A6 (6), (3-23)

where—A\y, o (y|0) is the information matrix/y (y; ¢), denotedlye(y|¢) here to emphasize
Bayesian conditioning ofl, and —\¢(¢) is the prior information matrix denoted/e(6).
Hence,

Ioyy (0ly) = Iyie(y]0) + 1o(0). (3-24)

When evaluated at the maximuarposterioriestimate, ]@|y(9\y) andlo(f) are called the
posterior observed information matrend theprior observed information matrjxrespec-
tively. Consequently, the posterior observed informaticgirm is equal to the observed
information matrix plus the prior observed information mat Evaluating (3-24) af and
substituting the factorization (3-14) for the observedinfation matrix gives the following
expression for the posterior observed information matrix:

oy (Bly) = Ixjo(z|0) — Ixyolzly,8) + Io(6), (3-25)

where the information matrices o (x|¢) andIxy,e(x|y, ) are the analogs of the complete
and missing information matrices (z;0) and I x|y (z|y; §), respectively, in the Bayesian
model ford. Thus, the posterior observed information matrix can b&&mrientirely in terms
of complete data and prior statistics. Again for brevityf ith some abuse of terminol-
ogy, the combination of the first and last terms in (3-25) wélreferred to as the posterior
complete information matrix, denotég|x(é|x), so that

Toy (0ly) = Toyx (0]x) — Ixyye(zly, 0); (3-26)

that is, the posterior observed information matrix is eqaahe posterior complete informa-
tion matrix minus the information lost to the missing data.
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4. OBSERVED INFORMATION FOR FINITE MIXTURE MODELS

Maximum likelihood estimation and computation of the obserinformation matrix
for finite mixture models (and Gaussian mixture models, irtipalar) are reviewed in this
section. Gaussian mixture models are the basis for the dgnamture models considered
in later sections.

41 GENERAL CASE

Lety ={y; : i = 1,...,n} be a given set of independent and identically distributed
p-variate observations, assumed to come from a mixtune afistinct sources in unknown
proportions. The goal is to find the maximum likelihood esties of the parameters for each
source distribution in the mixture, and the proportion eachrce contributes to the data.
(In general, the number of sourcesmust also be inferred from the data, but that problem
is not addressed here.) Finding these estimates would &igtdforward if the data were
labeled, that is, if each observatigncame with a labet; taking a value in the sdtl, ..., m}
indicating the source from which it came. The labels {z; : i = 1,...,n} are the missing
data in this problem. The complete data are thea{z; : i = 1,...,n}, wherex; = (y;, 2;)
is the complete data vector associated with the observadvdatory;.

It is assumed that the labeisare independent; since the observed dat@ae assumed
to be independent, it follows that the complete datare independent as well. Moreover,
since the sectior; of the complete data sample spatedetermined by the observation
is simply the set{y;} x {1,...,m}, it follows that the integrals ovef,; described in the
preceding sections are simply sums overithpossible sources @f. In particular, using the
identity

fxi(@i;0) = friz, (i, 25 0) = frijz (yil 26:.0) fz,(2:;.0), (4-1)

the observed data likelihood function for the samples given by the marginal
Frwi8) = [ Fr(oi)dn =Y iz (ulis0)f20i0) (4-2)
L; =

Thus, fy, (v;; 0) is a mixture density function, wherg; z, (v:|J; ¢) is the density function for
the sampley; given that it comes from sourcg and f,(j; 0) is thea priori probability of
drawing a sample from this source.

Given an estimat@®) for the mixture parameter$, the updated estimat@ ) is
obtained by evaluating the conditional expectations (2angd maximizing the sum of the
results, as in (2-6). Combining the previous two results withidentity

_ sz(xlve) _ sz'Zz'(yi:Zi;9>
fvi(yi; 0) fvi(yi; 0)

Fxapv (wilyi; 0) = fzvi(2ilyi; 0), (4-3)

19



the conditional expectations (2-7) for the finite mixturedabbecome
By [Ax,(X50) | X; € Ly) Z [Aviz Wild; 0) + Az, (5 0)] fzyv.(ilyi 6%, (4-4)
7=1

where ) )
fyviiz (Wil g 0) f2,(5;0)

Fa W0 = S gl )£, 1:6)

is the conditional probability that the samplecomes from sourcg.

The observed information matrix for the finite mixture mogegiven by (3-19). The
conditional expectations in (3-19) are computed as in (4Mparticular,

(4-5)

By [Bx,(X;;0) | X; € R] = =Y [z wili: 0) + Az, 0)]" fzyv: (ilyi; 0), (4-6)

Jj=1

E; [Sx,(X;;0) | X; € R] = Xm: )\y|Z (yil7;0) + Az, (J; 9)} sz'lYi(j‘yi;é), (4-7)
j=1
and
Ej [Sx,(Xi;0)S%,(Xi:0) | X; € L;] =
in: [Aviiz (yil3; 0) +/\Zi(j;9)}/[/\mzi(wj;@)+)‘Zz’<j§0)}/szi\y;(j|yi;é). 4-8)
j=1

The expectations (4-6) and (4-7) simplify further by inteanging the order of summation
and differentiation:

B [Bx,(Xi:0) | Xi € R] = —{Ey[\x,(Xi30)| X; € Li]}", (4-9)
Therefore, once the expectation (4-4) required to comédﬁe)btained, it need only be dif-

ferentiated twice to obtain two out of the three expectati@yuired to compute the observed
information matrix/y (y; ) as given by (3-19).

4.2 GAUSSIAN MIXTURES

For finite Gaussian (or normal) mixture models, the condélmbserved data density
function fy, 7, (vi|2i; 0) is taken to be the multivariate Gaussian density funati@n| .-, , 2., ),
where

1 1 B
gb(a|b, C) = W €xXp {—E(a - b)TC (CL — b)} (4'11)

is thep-variate Gaussian density function with mean veétand covariance matrik’. Addi-
tionally, the prior probabilityf, (z;; 6) is taken to be the probability,,, where{r, ... 7}
is a fixed set o priori probabilities.
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4.2.1 Parameter Estimation

The parameters to be estimated in this model are, in gerteeaimean vectors;, the
covariance matrices;, and the prior probabilities; for the missing measurement-to-source
labels. However, to simplify the analysis of the observedrimation matrix, unequal but
known values of the covariance matricésare assumed. Hence, the parameter vettor
this problem contains the mean vectprsand the mixing proportions;. Consequently, the
complete data support functiov, (x;; #) for this model is

Ax, (i, 20):0) = =3 (yi — 12,) TS (Y — py) + log sy, (4-12)

where the first and second terms correspond to the conditbisarved data support function
Ay, 1z, (yi]2i; 0) and the prior support functioky, (z;; 6), respectively, and terms not dependent
on the parameter vectérare dropped from this expression.
It is important to emphasize that the mixing proportiotysare not independent. In
particular,
Som=> fa(ii0)=1, m=>0, j=1....m, (4-13)
j=1 j=1
and one must be careful to account for this dependence whiemeéag the mixing propor-
tions and computing the observed information mafkiXy; é). In the sequelr,, is used to
denotel — 7 — --- — m,,_1, and the full expression is employed when taking derivativie
the complete data support function to ensure proper acicguot the constraint in (4-13).
The update equations for the mixing proportiangnd mean vectors; are obtained by
substituting the Gaussian mixture model described abdwekpressions (4-4) and (4-5), and
performing the maximization in (2-6) subject to the consiran (4-13). To simplify notation,
letw;; denote the conditional probabilitl, v, (j]y:; #) that observation; comes from source
J. Then, given estimates far; andy; from thekth iteration, the update equations are

n

7T](-k+1) = %Z w](-l;), (4-14)
i=1
and §
“gkﬂ) = (%erl) Z wj(f) Yi, (4-15)
nm, i=1
with
I A I ) (4-16)

Ju m k k :
S Pyl )
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4.2.2 Observed Information Matrix Computation

The observed information matrix for this case is(&n — 1) + pm) x ((m — 1) + pm)
block matrix, where thém — 1) x (m — 1) block in the upper left-hand corner contains the
information contribution from the first, — 1 mixing proportions, and them x pm block in
the lower right-hand corner contains the information abation due to then mean vectors,
each of lengthp. The off-diagonal blocks pertain to information in the warg mixing propor-
tion and mean vector combinations. The observed informatiatrix computation requires
computation of the expectations (4-8) through (4-10). &gt5 denote any two parame-
ters in the se{my, ..., mn_1, 1, .-, tm}- TO Simplify notation, the following shorthand is
introduced for expressions (4-8) through (4-10):

<SiSzT>Oéjﬁl - Eé [{ij )\Xi (X27 9)}{vﬁz >\Xi (X“ 8)}T ‘ Xi € Ll} ) (4-17)
<Bi>0¢jﬂl = _vaj{vﬁl Eé [/\XL (Xi; 9) | Xi € Li]}Tv (4'18)
<Si>aj = Vaj Eé [)\XZ (Xu 0) ’Xz S Ll] . (4-19)

Substituting the complete data support function (4-12)HerGaussian mixture into the above
expressions yields the following results:

a. From (4-19),

<Si>7rj = wji/ﬁj—wmi/wm, jzl,...,m—l, (4'20)
<Si>lij = wﬂE]_l(yl — ,uj), j = 1, e, M. (4-21)

b. From (4-18),

Wji/TF 4 Wi /75, § =1,

(Bi)rm = ) | jl=1...,m—1, (4-22)
wmi/ﬂ-m7 J 7é lv
w'iz‘ila ) = l?
(B =4 90 Gl=1,...m, (4-23)
07 j % l)
(Bi)mum = 0, j=1....m—1, [=1,...,m. (4-24)
c. From (4-17),
Wy 2+ Wi 2 5 | = la
(SiST ) pm =4 7 /m [T jl=1,...,m—1, (4-25)

wmi/ﬂ-gw j 7é la
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w5 (s — ) (e — ) TS =1

(SiSTY i = ' j,l=1,...,m, (4-26)
0, J#1,
Ty — ) T2 ! gil=1,....m—1,j=1,
(SiST ) mym =1 0, l=1,...,m—1,j#1, (4-27)

_fr_?:(yi_,umyrzmlv j=1L....m—=11=m

The expectations required in (4-25) through (4-27) areinbthusing the following results
for the first derivatives of the complete data support fuorcti

vﬂ'j )\XL((yw 21)7 0) = —% if Zi = 1m, (4'28)
0 otherwise

Sy - py) i z=
0 otherwise

VM Ax, ((?Ju Zi); 9) = { (4-29)

Finally, let, ; denote the sub-block of the observed information matrioeiased
with the parameter estimatés, 3. Then, from (3-19), using the above shorthand,

n

[dj/él - Z< >0¢Jﬂz Z S SZT a B + Z i O‘J SlT (4_30)

i=1

Substituting (4-20) through (4-27) into (4-30), it followsat the terms in (4-22) cancel with
the terms in (4-25). Also, the sum of the terms in (4-27) esja@ro when evaluated at
the estimates; and/i; as given by (4-14) and (4-15). These results lead to theviolig
simplifications of the observed information matrix for Gsias mixtures:

n

Iﬁjﬁ-l = Z(SZ>7}J<SZT>7}], j,lzl,...,m—l, (4-31)
i=1

Ly = Y (S)a(Shu. j=1...m—-1 1=1..m, (4-32)
=1

Liae = > (SDp,(SDps gl=1,....m, j#L (4-33)
=1

Thus, use of the empirical Fisher information matrix as apreximation to the observed
information matrix is somewhat justified in this case, alttjo the extra calculations in (4-23)
and (4-26) required to obtain the exact observed informatiatrix are hardly prohibitive.
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5. OBSERVED INFORMATION FOR DYNAMIC MIXTURE MODELS

As discussed in the introduction, dynamic mixtures arewisebdels for data collected
over time originating from a number of distinct moving s@sc The goal is to estimate
the source trajectories, that is, to “track” the sourcefi@garameter space and to accurately
characterize the uncertainty in the track estimates. thaély, the uncertainty in the estimated
tracks should increase when the sources interfere with etldr in the observation space,
for example, when two or more trajectories cross paths; areagent-to-source assignment
uncertainty is often a significant source of uncertaintyhiese situations.

In the following sections two important dynamic mixture netglare presented, one
in which the sources follow unknown but deterministic tcdggies, and one in which the
trajectories themselves are subject to random perturmtiGaussian mixtures are used to
model the distribution of the observations at each sampiing in both cases. It is assumed
that at each time¢ = 1,...,T, a set ofn, independent samples = {y;;}, i = 1,...,ny,
is obtained from the mixture. Let = {y,;} denote the entire collection of samples, and let
x; = {zy} andx = {z;} denote the corresponding sets of complete data samplesalka
assumed that the setg andy; are independent across the sampling times. Note, however,
that since the sources in the mixture are in motion, theseasetnot identically distributed
from one time to the next.

5.1 DETERMINISTIC MOTION

In the deterministic case the motion model for each souremisedded in the observa-
tion matrix of the standard multivariate linear model. Intgalar, assuming that the x 1
measurement vectag, comes from sourcg, y;; is related to they x 1 vector of kinematic
parameterg,; through the equation

Yii = Mjppe; + €54, (5-1)

wherel;, is ap x ¢ matrix that mapg:; to the observation space at ti@nde,; is ap x 1
Gaussian random vector with zero mean and covariance mapiXxThe random errors;;
are assumed independent.
For example, suppose sources move with constant velocity in a plane, and observa-
tions of the source positions are obtained at multiple sengpimes. The trajectory of source
J is completely specified by its position and velocity at antaaby reference time,. Let y;
be thexy-position andry-velocity of source at timet,. The position of sourcg at any time
t is given byM;, 1, where

1 0 A 0
M, = bt (5-2)
0 1 0 A
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andA,,, is the elapsed time betweemandt...

Given the linear Gaussian model (5-1) for observaggrassuming sourcg, the con-
ditional observed data density functigp, z,, (v:|24; ¢) is the multivariate Gaussian density
function ¢(y,; | M., Rje). As before, the prior probability,, (z; ¢) of observing source
j attimet is taken to be the probability.,, where{r,,...,m,} is a fixed set ofa priori
probabilities for observing data from each source.

5.1.1 Parameter Estimation

The parameters to be estimated in this model are, in gerieeakinematic parameter
vectorsy,; and the measurement covariance matriéggogether with the prior probabilities
w; for the missing measurement-to-source assignments. Howevsimplify the analysis of
the observed information matrix for this case, unequal mawn values of the covariance
matricesR; are assumed. Thus, the parameter vegtmntains the kinematic vectors and
the mixing proportionsr;. Consequently, the complete data support funchrx;; #) for
this model is

A, (e, 22)10) = [=5 (W — Myerty) Ry (yes — Miepty) +log ]| (5-3)

where the first and second terms in brackets correspond tootiditional support function
vz (Yei| 2445 0) and the prior support functiohy,, (z; 0), respectively, and terms not de-
pendent ort are dropped from this expression for clarity.

The update equations for the mixing proportianand the kinematic parametearsare
obtained by substituting the linear Gaussian dynamic medoodel described above into the
analogs of expressions (4-4) and (4-5) for data collectes owore than one sampling time,
and maximizing the resulting expressions with respect tmd . as in (2-6) subject to the
constraint (4-13); the single sum over the measuremenkinde (2-6) is replaced by the
double sum over the time and measurement indiegsl:, respectively, in this case. Let;;
denote the conditional probabilitfz,, v, (j|w; ) that observation,; comes from sourcg.
Then, given estimates fot; and; from thekth EM iteration, the update equations for the
conditional probabilities and mixing proportions are

(k) _ ( (ytz\ t/tj)aRjt)

Wiy =
21:1 771 (?Ju\MZt,ul th)

(5-4)

and

e+ ZZ (5-5)

t=1 =1

wheren = 3", n, is the total number of observations over all sampling times.
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The update equations for the kinematic parametgrassume intuitively appealing
forms when written in terms of the “synthetic” measurements

n k
~(k) Zztl wj(tz)ytl

yjt - n K (5-6)
Zi;l w§tl>
and synthetic measurement covariance matrices
. R.
Ry = (5-7)

T
The synthetic measuremegy for sourcej at timet is the probabilistic centroid of the ob-
servationsy,; with respect to the assignment probabilities;. The synthetic measurement
covariance matrix?jt Is the measurement covariance matrix for soyraetimet divided by
the expected number of measurements from this source,tmoreti on the observations;.
To see this, define the indicator functions
1, if z; =7,
Li(we) = 1;((yei, 21)) = _ (5-8)
0, otherwise
and letn;,(x;) = > 1", 1;(xy;) be the number of measurements that come from souate
timet. Then,

E[njt<Xt)‘Xt € Ly = Z 1]'( Yrir 1)) Wiy = Z Wit (5-9)

is the expected number of observatigpshat come from sourcg Incidentally, thea priori
expected number of observations from soujeg timet is

Enj(Xt)] Z Z Li((yei, 1)) m = nemj. (5-10)

=1 =1
Using expressions (5-6) and (5-7) for the synthetic measentés and synthetic mea-
surement covariance matrices for soujcéhe update equation for the kinematic parameter

T
<Z Mﬁ[f?ﬁf)]‘lMﬁ) D = (Z jf”). (5-11)

This set of linear equations to be solved foris the set of normal equations far, from
linear least-squares theory. It follows that the updatditnese for.; is the weighted least-
squares estimate fat; given the synthetic measuremegjswith weights determined by the
synthetic measurement covariance matriggs

vectory; is

*The term “synthetic” in this context is adopted from Streitid.uginbuhl [8].
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5.1.2 Observed Information Matrix Computation

The observed information matrix for the linear Gaussianagiyic mixture model is
similar to that for the standard Gaussian mixture modehasgby expressions (4-20) through
(4-33), but with the subscripts for the measurement indesplaced with subscripts for the
time and measurement indiceandi, respectively, and the single sums oveeplaced with
double sums ovetr andi. In particular, the observed information matrix for thiseas an
((m — 1) 4+ gm) x ((m — 1) 4+ gm) block matrix, where thém — 1) x (m — 1) block in
the upper left-hand corner contains the information cbatron from the firstn — 1 mixing
proportions, and them x gm block in the lower right-hand corner contains the informoati
contribution due to then kinematic parameter vectors, each of lengthSubstituting the
complete data support function (5-3) into the analogs ofesgions (4-17) through (4-19)
for data collected over multiple sampling times gives tHefaing results:

a. From the time-dependent form of (4-19),

<Sn‘>7rj = Wjti/Tj — Winti [T,  J=1,...,m—1, (5-12)
<Stz‘>uj = wjtiMj-‘l;,Rj_tl(yti — M), j=1,....m. (5-13)

b. From the time-dependent form of (4-18),

2 2
Witi [TF + Winti [Ty J =1,

(Bti)mym = ) ' gjl=1...,m—1, (5-14)
wmti/ﬂ—m’ J 7£ la
wi MIR My, =1,
<Bti>#jl‘l = e it ]7l =1,...,m, (5-15)
0, J#1
(Bti) sz =0, j=1....m—1, [=1,...,m. (5-16)

c. From the time-dependent form of (4-17),

2 2
Witi [TF + Winti [Ty, J =1,

<StiS;|;>7ij - Jl=1...,m—1, (5_17)

wmti/,/TEna j 7&[7

wjtiMj-‘I;Rj_tl (Yti — M) (yri — thﬂj)TRﬁlet, J=1
0, J# 1,
j,l=1,...,m, (5-18)

<StiSt-E>MjM =
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%<yt1_thM])TR;flM]t7 j?l:]-a?m_]" ]:l7

<StiSt-l;>7l’jHl =10, Ll=1....m—1,7#I, (5-19)
_ij(ytl_Mmt#m)TRaiMmt7 J = 1"..’m_ 17 l:m

s

As before, let;, 5, denote any two parameters inthe §et, ..., 7,1, i1, - . ., it }, @nd let
1,5 denote the sub-block of the observed information matriociased with the parameter
estimatesﬁzj,ﬁl. Then, from the time-dependent form of (3-19), using thevalshorthand,

T ng T ng T n¢
Lo =2 (Bidas =2 > (SuShlas+ 2> (Su)a; (i)  (5-20)
t=1 i=1 t=1 i=1 t=1 i=1
Substituting (5-12) through (5-19) into (5-20), it follovsat the terms in (5-14) cancel with
the terms in (5-17), and that the sum of the terms in (5-19pksgrero when evaluated at
the estimates; and /i;, as given by (5-5) and (5-11). These results lead to thevialig
simplifications of the observed information matrix for lavéGaussian dynamic mixtures:

T ng
[frjfrl = ZZ(Sti>ﬁj<St—zr>frm jal = 17"'7m_ 17 (5_21)

t=1 i=1

T nt

[ﬁ-jﬂl = ZZ<Sn>7ATJ<St-E>ﬂl’ jzl,...,m—l, lzl,...,m, (5-22)
t=1 i=1
T nt

Ljae = DY ASua(Sida, Gil=1,....m, j#L (5-23)
t=1 i=1
Note, however, that use of the empirical Fisher informatmatrix as an approximation to the
observed information matrix is not strictly speaking jfist in this case, as the observations
yy; are not identically distributed across sampling times.ebd] the mixture distribution for
the observationg;; in general changes location and shape from one time to thedoexto
the motion of the sources.

5.1.3 Interpretation of Complete Information Matrix

Before proceeding to stochastic motion models for dynamitumes, it is worth ex-
amining the statistical interpretation of the complet®infation matrix for the deterministic
case. The first term in (5-20) is the sub-block of the complg#mation matrix associated
with the estimatesg, 3; the last two terms represent the information lost to thesimisdata.
Let [Ix];; denote theym x gm block of the complete information matrix associated wit th
collection of kinematic vectorg;, let[/x];,;, denote theth diagonal; x ¢ sub-block of this
matrix, and let{u; : j = 1,...,m} be the collection of unit vectors of length, where the
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jth element of; equals one and all other elementsuofequal zero. Substituting (5-15) into
the first term of (5-20) and using the synthetic measuremarar@ance matrices (5-7) gives

[Ix Z wiu] ® [Ixlpn, = Z uju, @Z R M. (5-24)

7=1
This result may be interpreted in terms of the M-step at tred &M iteration (that is, iteration
k = o0) as follows. For eachi € {1,...,m}, consider the multivariate linear model

ijt :M]t,uj—i_fy]t? = 17"'7T7 (5-25)

wherey;, iIs ap x 1 measurement vectoh/;, is a knownp x ¢ observation matrix;; is a
g x 1 parameter vector to be estimated, andarep x 1 independent, normally distributed
noise vectors with zero means and known covariance mathigedhen,

1 T
(v U); (Z M> (Z MjTtRﬁl.@jt> (5-26)

is the minimum variance unbiased (MVU) estimate ggwith error-covariance matrix

T —1
Cﬂ(MVU)j = (Z M;;Rj_thjt> ) (5-27)

t=1
assuming that this matrix has full rank. The inverse of th&nn is the Fisher information
matrix for this problem. Comparing (5-26) with (5-11), it imlvs that the M-step at the final
EM iteration is equivalent to the MVU estimation problem the multivariate linear model
(5-25) with independent measuremegjjg) and known measurement covariance matrices
]:25.‘;"). Furthermore, from (5-27) and (5-24), it follows that therggete information matrix
for ji; is equivalent to the Fisher information matrix foy for this MVU estimation problem;
that is,
Ux)pn =Cht . (5-28)

H(MVU);
Thus, the observed information matrix fof can be written using the missing information
principle as in (3-14) as follows:

)iy = Chpvey, — Ux1v i (5-29)
where [Ix|y]s,, is the information lost to the missing data. This seemindlyious con-
nection between the complete information matrix obtaintetthe final EM iteration and the
Fisher information matrix obtained from the equivalent M¥ktimation problem for this de-
terministic dynamic mixture model leads to a clearer undeding of the analogous result
for the stochastic model discussed in the next section.

30



52 STOCHASTIC MOTION

Suppose the trajectory of each source is subject to randdnrpations about an under-
lying deterministic motion model. Then, each source ttajgcmay be treated as a sequence
of random variables for which the deterministic motion niddehe mean. In particular, let
w;; denote the kinematic “state” of sourgeat timet¢. Then, it is assumed that the states
i ={p:t=0,1,..., T} are related by the first-order Gauss-Markov process

Mie = Flep1ptje—1 + 0541, (5-30)

whereF}, ,_, are known; x ¢ state transition matrices, ang are independentx 1 Gaussian
random vectors with zero means and known covariance matgjge Additionally, the state
of source; at timet, is assumed to be normally distributed with megrand covariance
matrix I';. As for the deterministic case, it is assumed that the olasensy,; are related
linearly to the source statgs, so that, assuming that observatigncomes from source,

Yri = Mjipije + €54 (5-31)

where againl/;, are knowrnp x g observation matrices, anrg, are independent x 1 Gaus-
sian random vectors with zero means and known covariancecesk;,. Furthermore, it is
assumed that the random perturbatiépsinde;,; are independent.

Consider again the constant-velocity motion example ptesefor the deterministic
case. As before, suppose thatsources move (nominally) with constant velocity in a plane,
and that observations of source positions are obtained liptetsampling times, but that the
kinematic state vectors for the sources are subject to ranqmisturbations between sampling
times. Then, to within these perturbations, the positiath\alocity of sourceg at timet can
be predicted based on the position and velocity of the soatr¢enet — 1 using the state
transition matrixf;,—,. For the nominal constant-velocity model, the predictgeposition
andzy-velocity of source at timet is Fjj;, ;1 1t;:—1, With State transition matrix

10 Ay 0
0 1 0 Ay

Fiti 1= ’ 5-32
s 0o 0 1 0 (5-32)

0 0 0 1

The position of sourcg at timet is simply M, .., with observation matrix
1 000

M., — ) 5-33
oo 539

31



With the distributional assumptions on the source states{y; : j = 1,...,m} inthe
Gauss-Markov process model (5-30), and assuming a diffisiefpr the mixing proportions

m={m;:j=1,...,m}, the joint density function for the parametérs- (r, 11) is
m T
fo((m, 1)) o H ¢ (1joln;, T's H Ot Fjp—11tj,-1, Qje—1), (5-34)
j=1 t=1

where the sources are assumed to be independent, and #eefetatach source are condi-
tionally independent from one sampling time to the next. Tamplete data and observed
data density functions for this stochastic dynamic mixtmadel are essentially the same as
for the deterministic model, except for the dependencee$tate vectorg;, on the sampling
times. Specifically, the complete data density function is

T ng

fxie((y, 2 HH P (yui| M. t,ujthjt)Hj:Z“- (5-35)

t=1 i=1
Marginalizing over the missing measurement-to-sourcigasgentsz, and interchanging the
order of the sums and products, gives the observed datayansition

T ng m

frie (y|0) = H H Z ¢ yt%’thMJt7 Rjt) (5-36)

t=11=1 j=1
5.2.1 State Estimation

The parameters to be estimated in this model are the mixiogoptions7 and the
kinematic state vectorg. The state vectors; = {p;; : t = 0,1,...,T} for sourcej are
treated as a concatenated state (column) vector for theidlsis discussion. The system
matrices{ Fj;,—1}, {Q;:}, {M;: }, and{ R, } are all assumed to be known.

The update equations for the maximanposterioriestimates ofr and, are obtained
by substituting (5-34) and (5-35) into (2-11) and perforgnthe necessary expectations and
maximizations. Let

U(0]0™) = Ego [Axje(X[0)|X € L]+ Ao (0) (5-37)

denote the E-step at thi¢h EM iteration. Substituting (5-34) and (5-35) into thigeassion
and performing the expectation gives

m T
\I!(H\G(k)) = Z {log ¢ (jolmy, T's) + Z log @ (pje| Fye—1tj0-1, Qjie—1)
7=1 t=1

n

T nyg m T
+ 3> wh log ¢y My, R } + 3> wl logm;, (5-38)

t=1 i=1 j=1 t=1 i=1
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where the conditional probabilities;;; = fz,,v...e (2|, ) are obtained from the ratio of
(5-35) and (5-36):

(k) _ W§k)¢(yti\thM§};)a Rjt)

T Pyl My, Rur)
Since the prior distribution for the mixing proportionsis assumed to be uninformative (that
is, uniform), the update equations foy are identical to the update equations (5-5) for the
deterministic case.

The update equations for the kinematic state vegtgrare more complicated for the
stochastic case because of the time dependence betwees dt@t to the Markov model
(5-30). As for the deterministic case, these update equatssume intuitively appealing
forms when the E-step is written in terms of the synthetic sneaments (5-6) and synthetic
measurement covariance matrices (5-7). After some tedilgebraic manipulation, and ig-
noring an additive constant that does not depend ony, the result is

(5-39)

m T
UOESY {logd) pioln;, T Z 10g &(ttj2| Fee—1/j0-1, Q1)

J=1
+ Z log ¢(3y | Mjipije, R } ZZZ w'y) log ;. (5-40)

t=1 7j=1 t=1 i=1
Let{e; : ¢ = 0,1,...,T} be the collection of unit vectors of length + 1, where theith
element ofe? equals one and all other elements:plequal zero, and leE?. = e2e2T for all
t,7=0,1,...,T. Taking the derivative of (5-40) with respect to theand setting the result
equal to zero gives the following(T + 1) x ¢(T + 1) system of equations for sourge

k k41 k
I((d(zta)j + ](p’r‘ior)j] IU’( ) = [dgd()zta) + d (prior)j | » (5-41)
where
I((sc)bta)j = Z By ® MT R(k)] let, (5-42)
k o = (k)1 —1~(k
iy = Z e; ® MLRY 5. (5-43)
and
T-1

Iprio; = Eg®T; + Z ER@ Qi+ Y By @F Q5 Flae

t=1 t=0

T
—~ Z B @ Fy, Q=Y By ®Q5  Fiu, (5-44)

t=1

d(pm'or)j = €8®Fj e (5'45)
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The linear system of equations (5-41) can be eﬁiciently@Mru§k+l) using a specialized

form of Gaussian elimination for block-tridiagonal systemlternatively, as shown by Streit
and Luginbuhl in [8], the system can be solved efficientlyngsa fixed interval Kalman
smoothing filter. To see this, observe that the term in bracespression (5-40) is the natural
logarithm of the joint density function for the random stagguence:; with Gauss-Markov
process model (5-30), and observatignswith measurement model

gjt = thl”’]t + Vit t= 1a s 7Ta (5-46)

where~;, are independent x 1 normally distributed noise vectors with zero means and
known covariance matriceéjt. The joint density function for the combined model (5-30)
and (5-46) is the joint density function for the fixed intdrgenoothing problem of Kalman
filtering theory. (A useful reference on Kalman filtering d¢ing for this work is the book
by Mendel [36].) Hence, the state estimafgsobtained from the M-step at the final EM
iteration ¢ = oo) are equivalent to the minimum mean-squared error (MMSHneses for

; obtained from the fixed interval Kalman smoothing filter gitke synthetic measurements
g](.fo) and synthetic measurement covariance mattl%gé@.

The linear Gauss-Markov dynamic mixture model presentédignsection is precisely
the tracking model used in the PMHT method of Streit and Liogin [8]. In their report,
the authors attempt to interpret the Fisher informationrédr the stateg; in terms of the
error-covariance matrices obtained at the output of thevatant Kalman smoothing filter for
the M-step at the final EM iteration. Their interpretatiomat theoretically, by their own ad-
mission, completely satisfactory. At the end of this settan exact statistical interpretation
of these matrices is given in terms of the complete inforamatnatrix for the state estimates
fv;. Specifically, it is shown that the error-covariance masifrom the Kalman smoothing
filter for /i; in the PMHT model are the diagonal blocks of the inverse ofpibsterior com-
plete information matrixg X(é|x) corresponding t@;. Consequently, these error-covariance
matrices do not account for the information lost to the migglata and, thus, are overly op-
timistic estimates of estimation error.

5.2.2 Posterior Observed Information Matrix Computation

The posterior observed information matrfkg‘y(é]y) for the linear Gauss-Markov dy-
namic mixture is, by (3-24), the sum of the observed inforamatnatrix Iy|@(y|é) for the
linear Gaussian mixture measurement model (5-36), andribegbserved information ma-
trix [e(é) for the Gauss-Markov process model (5-34). The observeatnrdtion matrix
Iy‘@(Q’é) is similar to that for the deterministic case, as given byreggpions (5-12) through

(5-23), except that the sub-block for each state vegtas itself a block matrix, with sub-
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blocks corresponding to the kinematic state of the sourtienatst = 0,1,...,7. In partic-
ular, the observed information matrix for this case is(@n — 1) + ¢(7" + 1)m) x ((m —

1) 4+ q(T + 1)m) block matrix, where thém — 1) x (m — 1) block in the upper left-hand
corner contains the information contribution from the first— 1 mixing proportions, and
the ¢(7" + 1)m x q(T + 1)m block in the lower right-hand corner contains the inforroati
contribution from then concatenated state vectqrs each of lengthy(7" + 1). Substitut-
ing the complete data support function obtained from (5i8f) the analogs of expressions
(4-17) through (4-19) for data collected over multiple séingptimes gives the following
computations for the information matrix o (y|6):

a. From the time-dependent form of (4-19),

<Sti>7rj = wjtz’/ﬂj - wmti/ﬂ-my Jj=1...,m—1, (5‘47)
<Sti>uj = 8 wjtiMﬁRﬁl(yti — Mjipje), j=1,...,m. (5-48)

b. From the time-dependent form of (4-18),

2 2
Witi [T5 + Winti [Ty § = L,

(Bu)n,m = 2 ' Gl=1....m—1,  (5-49)
wmti/ﬂ-ma J % la
Ee @ wyMIRIM,, j =1,
(B = 4 102 Wit St Gl=1,. .. .m, (5-50)
07 j % l7
(Bti) sz =0, j=1....m—1, [=1,...,m. (5-51)

c. From the time-dependent form of (4-17),

2 2 c_
Witi | T3 + Winti [ Trryy = 1,

(SuSp)mm = jl=1,....,m—1,  (5-52)
wmti/ﬂfm ] 7£ l7
- By, @ wji MRy (Yo — Myupie) (Y — M) "Ry My, j =1,
<StiSti>ujuz = )
0, J#1,
j,l=1,...,m, (5-53)
e? (%9 u;{]“ (ytz - thﬂjt)TRj_thjtv .]7l = 17 I 1a j = l7
(SuSE)mm =10, gl=1,....m—1, j#I,
_6? & u;::l“ (ytz - Mmtﬂmt)TR;@}:Mmta j - 17 I 17 l =m.
(5-54)
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Recall that the prior information matrik (¢) is the negative second derivative of the prior
support functiom\g (0) = log fo(#). Hence, from (5-34),

Ve AVa de(®)} = 0, Gl=1...m-1, (5-55)

[ 0T )] ) = la .
VAV e} = L i=1,...m  (5-56)
0, J#1,

Ve AV de@®} =0, j=1,...,m-1, I=1,...,m (5-57)

Let «;, 5, denote any two parameters in the §et, ..., m,—1, to, ft1, - - -, b }, @nd Ietldj@
denote the sub-block of the posterior observed informatiatrix associated with the es-
timatesdj,B,. Then, from (3-24) and the time-dependent form of (3-19haishe above
shorthand,

T ne

[@jﬁl - Z Z <Bti>djﬁz - Z Z <S“S'I>djﬁz + Z Z <S”>&j<sg>ﬁz

t=1 i=1 t=1 i=1 t=1 i=1
~ YT
— V. {v@l )\@(9)} . (5-58)
Substituting (5-47) through (5-57) into (5-58), it follovisat the terms in (5-49) cancel with

the terms in (5-52). These results lead to the following siicptions of the posterior ob-
served information matrix for linear Gauss-Markov dynamigtures:

T ng

]ﬁ'jfrl == ZZ<Sti>ﬁ'j<S;;>frl7 j?l = 17"'7m_ 17 (5-59)
t=1 i=1
T ng

Lje = >.) AS)a (S dl=1....m j#L (5-60)

t=1 =1

Again, use of the empirical Fisher information matrix as gpraximation to the observed
information matrix is not appropriate in this case, sin@dhservationg,; are not identically
distributed across sampling times due to source motion.

5.2.3 Interpretation of PMHT Error-Covariance Matrices

Finally, the connection between the error-covariance isegifor the state estimatgs
obtained from the equivalent Kalman smoothing filters fer¥h-step at the final EM iteration
for the linear Gauss-Markov mixture model and the posteaonplete information matrix for
these estimates needs to be established. The first andrlastite(5-58) constitute the sub-
block of the posterior complete information matrix assteawith the estimates; and Br;
the middle two terms in this expression represent the infdion lost to the missing data.
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Let [/ox ] denote they(T + 1)m x ¢(T + 1)m block of the complete information matrix
associated with all of the kinematic state vectors, andllgk|;,,, denote thejth diagonal
q(T+1) x q(T + 1) sub-block of this matrix. Substituting (5-50) and (5-5@pithe first and
last terms of (5-58) and using the synthetic measuremeiirizmce matrices (5-7) gives

Lox]pn Z UJU ® [Lo|x]p;n, Z u]u ® [(data)j + L(prior);]- (5-61)

j=1 j=1
This result may be interpreted in terms of the equivalentréad smoothing filters for the
M-step at the final EM iterationk(= o) as follows. Consider the concatenated form of the
Kalman smoothing model. In particular, 1ét; : ¢ = 1,...,7} be the collection of unit
vectors of lengt’, where theith element ok; equals one and all other elements:péqual
zero, and let?,, = el forallt, 7 =1,...,T. Lety; = Ele e: ® 7 be the concatenated
synthetic measurement vector for soujcdhen,

v = Mjp; +;, (5-62)
where
My=[0 XL, Buw M, (5-63)

is the corresponding concatenated observation mayiis a normally distributed concate-
nated noise vector with zero mean and known covariancexnajri= 3. F, ® R;, and
the concatenated state vectgris normally distributed with mean vector

T
v; = Z e; ® vjy (5-64)

t=0

and covariance matrix -
Pi=Y Y E."®Pu, (5-65)

t=0 7=0

given by the following recursions from Theorem 15-5 in Mel{@6, pp.#217-218]:

j ) t= Oa
vy =4 (5-66)
P}t,t—lvj,t—la = ]-7 s 7T7
and

F]’, t: O,

Pjtt — (5'67)
Ett lpt 1,t— lFtt 1+th 1 t:]-w"vTa
F’jtTPjTTa t> T,

Pj, = t,7=0,1,...,7, t#7, (5-68)

Py F},

Tt t<T,
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where
Fyr = Fiuyp 1 Fli14—2- - Fjrp1, for t>r1. (5-69)

From Theorem 13-2 in Mendel [36, p.#180], the MMSE estimate.f for this linear Gaus-
sian model is given by

fvmsey; = vj + PiMT (M P M + Ry) ™ (i — Mjvy), (5-70)
with associated error-covariance matrix

P-

W(MMSE)j

= (P 4+ MRy M;) (5-71)
It is straightforward to show that

MR M; = Iidata);- (5-72)
Furthermore, it is shown in appendix B that

¢ (prior)j - (5-73)
Thus, from (5-61),

Pﬂ(MMSE)j = (Pj_l + M]-'I—Rj_le>_l - [I(data)j + I(prior)j]_l - [19|X]T1

By

(5-74)

that is, the inverse of the posterior complete informatiainr for the estimaté; is equal to
the error-covariance matrix for the MMSE estimate fgmjiven the synthetic measurements
and synthetic measurement covariance matrices at the fin@kEation. Moreover, since the
fixed interval Kalman smoothing filter is just an efficient@lighm for obtaining the MMSE
estimates (5-70) and the diagonal blocks of the error-ganae matrix (5-71), it follows that
the error-covariance matrices for the smoothed statesna@ot&rom this filter are the diagonal
blocks of the inverse of the posterior complete informatiwatrix for the estimatg;.

The posterior observed information matrix f@oy can be written using the missing in-
formation principle as in (3-26). From (3-26) and (5-74),

—1
A(MMSE)j

[[@\Y]ﬂjﬂj = - [[X\Y@]ﬂjﬂj? (5-75)

where [Ixy,els,,; is the information lost to the missing data. Thus, while itéspting

to interpret the error-covariance matrices from the Kalrsaroothing filters for the M-step
of the final EM iteration ashe error-covariance matrices for the states estimatest is
clear from this expression that these matrices provide paty of the information required
to compute error-covariance matrices fgr In short, the error-covariance matrices obtained
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from the Kalman smoothing filters do not account for the infation lost to the missing
measurement-to-source assignments. It is also clear fsend) that the posterior observed
information matrix forj; requires computation of thelll MMSE covariance matrix (5-71),
and not just the diagonal blocks provided by the Kalman shingffilter.

Furthermore, in general, the error-covariance matrix/fpmust be taken from the
inverse of theentireposterior observed information maty),- for all estimated source states
v and their mixing proportions, because in generaly is notblock-diagonal; that is,

Ueivlaas # Heyln,- (5-76)

Only in the case of no assignment uncertainty does this alggbecome an equality. Indeed,
from expressions (5-49) through (5-51), (5-55) through ;- and (5-58), it follows that as
the information in the missing data (the contribution frdra second and third terms in (5-58))
approaches zero, as when the sources move farther apgogstezior observed information
matrix approaches the posterior complete information imatvhich is block-diagonal, so

that from (3-26), (5-74), and (5-75),

U(;|1Y]ﬂjﬂj - [IéﬁX]ﬂjﬂj - [](—)'X]Ejlﬂj = Pﬂ(MMSE)j’ (5-77)

Subsequently, when there is no missing data, that is, wieem#asurement-to-source assign-
ments are known, the diagonal blocks of the inverse of théepos observed information
matrix, or the error-covariance matrices for the statemestes/i;, are equal to the error-
covariance matrices obtained from the Kalman smoothirgy fihich is expected given the
assumptions on the distributions of the measurements anstaites. Moreover, the inverse
of the posterior observed information matrix for the est#sa.; is equal to the posterior
Craner-Rao lower bound for the statgsin this case.

39(40 blank)






6. THEORETICAL AND PRACTICAL CONSIDERATIONS

At least two issues need to be considered when using theseeéithe observed infor-
mation matrix as an estimate of the error-covariance médrigynamic mixture models: the
accuracy of the normal approximation to the distributior aénd the cost of computing the
inverse. These issues are discussed below.

6.1 ASYMPTOTIC NORMALITY OF 4

Recall that the asymptotic distribution of the maximum likebd estimaté is normal
with mean vectof* and covariance matrik ' (6*), wheref* is the “true” value of the param-
eter vector, and/ (6*) is the Fisher information matrix. There are two obviousreators for
the asymptotic error-covariance mattix! (6*), namely,/~1(4) and ;' (y; 0). In [4], Efron
and Hinkley give theory, examples, and evidence from Fislogiginal writings supporting a
preference for the estimatd{ ' (y; 0) overI—1(f) for scalar parameter families. The simple
example at the beginning of their paper succinctly illussaheir reasoning. In any event,
both estimators are inferentially valid only for large saengizen. However, with regard to
the scalar parameter examples presented in their papen &fid Hinkley note that “repeated
sampling, withn as low as 10, seems to induce normality of the likelihoodematjuickly.”
On the other hand, McLachlan and Peel [37] state that “thekasizen has to be very large
before the asymptotic theory applies to mixture models teDaining sufficient sample sizes
for appropriate use of these large sample approximatiotiset@rror-covariance matrix for
the mixture models examined in this report requires furiinezstigation.

In a Bayesian model fof, the distribution of the maximum a posteriori estiméte
depends on the sample sizeand the nature of the prior distribution. Asymptoticallg a
n — oo, the distribution of) approaches the distribution of the maximum likelihoodreatie
for ¢ discussed above. For finite sample sizes, the distribuighdzpends on the relative
strengths of the data and the prior. If the prior is relayiveeak, the distribution of will be
closer to that of the maximum likelihood estimate. On thesotiand, in the absence of data,
the distribution of is equivalent to the prior distribution fox.

6.2 SEQUENTIAL VERSUSBATCH PROCESSING

Depending on the number of soureesand sampling time§’, the posterior observed
information matrix for stochastic dynamic mixture mode#sde costly to invert. For ex-
ample, the number of parameters to be estimated in the l{Baass-Markov mixture model
grows roughly linearly withn andT'. Specifically, the observed information matrix for this
model has dimensiof(m — 1)+ ¢(T' 4+ 1)m) x ((m —1) +¢(T + 1)m), whereg is the length
of the state vector for each source. Suppose, for instahee;ytpositions of two sources
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(m = 2) moving with constant velocityg(= 4) are observed at 10 different sampling times
(T = 10). The posterior observed information matrix for the onespehdent mixing propor-
tion and both sets of state vectors in this case has dimeRsier89. Computing the inverse
of this matrix requires roughly9® ~ 700 x 10° operations. There are perhaps efficient meth-
ods for obtaining this inverse, or selected portions of iterse (for example, the diagonal
elements), but investigations of such methods are beyansddbpe of this report.

An alternative but suboptimal approach for computing thet@aor observed infor-
mation matrix for stochastic dynamic mixture models is tduee the size of the matrix by
processing the data sequentially. In this approach, tteeatdiected at each sampling time are
processed as if they were the only data collected, and tteeettimates and error-covariance
matrices computed at this time are used as the mean vectbiogariance matrices of the
prior distributions for the states at the next sampling tifiee estimates obtained in this way
are suboptimal in that they are conditioned only on the dallected up to the current sam-
pling time, and not the entire data set. In the language ofidalfiltering theory, estimates
obtained by processing the data sequentially are calledddtestimates; those obtained by
conditioning on the entire batch of data are referred to asosined estimates. The reduction
in the number of computations required to compute erroedance matrices in this subopti-
mal filtering approach can be substantial. For the exampngibove, the posterior observed
information matrix for the one independent mixing propamtand the state estimates for the
two sources at each sampling time has dimensior 17. Computing the inverses of these
matrices for each of the sampling times requires roudhly17® ~ 50 x 10° operations, a
reduction by an order of magnitude over the optimal smogthjpproach.

While the error-covariance matrices for the state estine@sheaper to compute using
the filtering approach described above, the savings confeaxpense of accuracy in both
the state estimates and the error-covariance matrices.igtrue even for the state estimates
and error-covariance matrices obtained at the final sagpiime 7', for which one would
think smoothing would have no impact. When there is no measeméto-source assignment
uncertainty (for instance, when the sources are widelyra¢pd), the filtered estimates and
the smoothed estimates of the source states atTimend the associated error-covariance
matrices, are identical. The EM iterations for this casecdegate to a single iteration that,
in terms of the equivalent Kalman smoothers, correspondm&forward-backward pass
over the synthetic measurements for times 1,...,7. However, when there is significant
interference between the sources, many EM iterations magduered for the state estimates
to converge to their final values; each iteration correspdad forward-backward pass over
the synthetic measurements, whose values change with eashapcording to the updated
conditional measurement-to-source assignment probabili
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In practice, a balance between the filtering and smoothipgogehes can be achieved
by implementing the algorithm as a “sliding” batch. In thpgpaoach, the algorithm is first run
at each sampling time on a batch of data that is expanded fnrensampling time to the next
until it reaches a fixed length. When this length is reacheslptiich is then slid forward at
each new sampling time, so that the data at the current sagripine are added to the batch,
and the data from the oldest sampling time in the batch arevechfrom the batch. Lei(t)
denote the batch length at timeand letp denote the fixed batch length. Then, the batch
length at time is given by

t, t<p,

p(t) = (6-1)

p, p<t<T.
Several authors have proposed similar approaches (seexdonple, Rago et al. [38] and
Willett et al. [39]), and most have noted that the prior dlttions for the states in each batch
must be determined in such a way so that they are not funatibdata in the current batch.
The prior distributions for the states in the sliding batcbgmsed here are determined as
follows. In the expanding stage, the prior mean vectors awrtance matrices specified
at timet = 0 are used for each batch. In the sliding stage, the state a&ssnand error-
covariance matrices from the batch at time p are used in the prior distributions for the
batch at time; these error-covariance matrices are computed from tieesevof the posterior
observed information matrix for all the sources for the baittimet — p. This approach fixes
a problem with PMHT not identified in [39]. In particular, itould appear that the sliding
batch approach proposed in [39] uses the error-covariaateoss obtained from the inverse
of the posterior complete information matrix as priors fecsessive batches; it was shown in
the previous section that these error-covariance matieet®o small when there is significant
measurement-to-source assignment uncertainty.
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7. EXAMPLES

Two target tracking examples using the linear Gauss-Markoture model (that is,
the PMHT model) are presented in this section. The first exammf two constant-velocity
crossing targets. This example is idealized in the sengdlibee are no missed detections
(Pp = 1) and no false alarmd{-4 = 0). The second example is of a single constant-velocity
target in clutter Pr4 > 0). This example is further complicated by the possibilitymagsed
detections Pp < 1). In each case, the consistency of the target state estinsaggamined.
As described in the next section, consistency in this cangea measure of how well the
estimated error-covariance matrices reflect the actuatseim the state estimates.

7.1 ESTIMATOR CONSISTENCY
7.1.1 Parametric Test

Let /1;(¢]t) denote the state estimate of targeit timet given a batch of measurements
of lengthp(¢) > 1 with leading edge at timeand trailing edge at time— p(¢), and letC; (¢|t)
denote the corresponding error-covariance matrix. Wher tiseno assignment uncertainty
(for instance, when the target measurements are label&dhan the targets are widely sep-
arated) and under the linear Gauss-Markov model, the postistribution of the state,,
given the batch of measurements ), . ..,y is the normal distribution with mean vector
f1;(t|t) and covariance matri&’; (¢|t). Let fi;(t|t) = ;i — f1;(t|t) denote the estimation error.
Under these assumptions, it follows that

Elji; (t)‘yt—p(t)a o) =0, (7-1)
COV(/:Lj (t) |yt—p(t)7 A yt) - CJ (t’t) (7-2)

A state estimator is said to lm®nsistenif the estimation errors have these two properties.
Said another way, a state estimator is consistent if thenasbn errors have zero mean, and
their covariances equal the estimated covariances. (Se8Hzdom and Li [40] for a full
discussion of estimator consistency.)

Recall from [40] that the normalized estimation error sqdaleEES) for targey at
timet is defined as

vi(t) = iy (t]t) O3 (t]t) i (t]t). (7-3)

Given the modeling assumptions and ideal conditions desdi@bove, the NEES () is chi-
square distributed with mean (degrees of freedgmhereq is the length of the state vector
wie. Suppose the tracking simulation is riitimes. Then, one can compute the average
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NEES for each target:

_ 1 !

uj(t):NZy](-)(t), t=1,...,T, (7-4)

=1

Whereuj(l)(t) is the NEES for targej at timet for the /th run. By the properties of chi-
square distributed random variables, it follows thatimes the average NEES is chi-square
distributed withN g degrees of freedom. Hence, to test for estimator consigtene can test
the simple hypothesis

H, : Nv;(t) is chi-square distributed with mea¥y (7-5)

at each time. This is a two-sided test, the alternative hypothésjseing that the average
NEES7;(t) has mean less than or greater tiéqp The critical region for this test for a fixed
size (level of significance) is typically taken to be the lower and upper tails of the ajare
distribution, each with probability mass/2. Let xZ(r) denote the point in the intervl, co)
such that the left-tail probability of the chi-square dimttion with degrees of freedogis
r. Then, the acceptance region (complement of the critigabrg for this two-sided test is
the interval[x3,(a/2), x3,(1 — «/2)]. Simply put, if the null hypothesigl; is true, then
on averaggl — a)% of the average NEES values(t), t = 1,...,T, will fall within the
acceptance region.

7.1.2 Nonparametric Test

The test for estimator consistency based on the average N&E&w,(¢) is standard
in the tracking literature [40]. For comparison, an altékeatest based on the sample (or
empirical) distribution function of the NEES value§1)(t), . .,uj(.N) (t) is proposed. For
detailed discussions of tests of fit based on the empirictidution function (EDF), see
Craner [29, section 30.8], D’Agostino and Stephens [41], andaBtet al. [42, sections
25.35-25.44]. For the remainder of this discussion, cansath arbitrary but fixed target
at an arbitrary but fixed time. Let () denote thdth order statistic of the NEES values

vV (t),.... 1M (t), so thatly < -+ < (). The EDF for this sample is defined by

07 C < C(l)v
Fn(Q) =S I/N, (o <¢ < (v, (7-6)

There are several statistics based on the EDF used to téissethe hypothesized distribution
of the sample. The most well known is the Kolmogorov (K) stiti

Dy :Slclp|FN<C) — F(Q)], (7-7)
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where F'(¢) is the true (hypothesized) distribution function for thengde (in this case, the
chi-square distribution with meay). Less well known are those from the Crarrvon Mises
family of statistics

On = / " (F(O) = FOY Q) dF (), (7-8)

o0

where(¢) are non-negative weighting functions. Of these, the twotrstiglied are the

statistic corresponding to(¢) = 1, called the Crarr-von Mises (CVM) statistic, denoted
Wy, and the statistic corresponding t4¢) = [F(¢)(1 — F(¢))]™!, called the Anderson-
Darling (AD) statistic, denotediy. Each of the statistic®y, Wy, and Ay is a distance

measure between the EDFy (¢) and the hypothesized distribution functidii¢), and each

of these statistics can be used in a test-of-fit with simplgoliyesis

Hy - v\ (#),...,v{"™)(t) come from a chi-square distribution with megn ~ (7-9)

This test is usually cast as a one-sided (upper-tail) t8ste (41, section 4.5.1] for the reason-
ing behind this.) Percentage points (critical values) liese statistics for various significance
levelsa are given in [41, table 4.2, p.#150] and in [42, p.#420]; thd hypothesisH, is
rejected when these values are exceeded.

Properties of these non-parametric statistics are disdusdength in [41]. In summary,
Dy is often much less powerful thdiy and Ay, meaning that tests based b, often have
a lower probability of accepting the alternative hypotkesi when H; is true than tests
based oni/y and Ay; each of these statistics is sensitive to deviation fromntiean of
the hypothesized distributiof(¢); Ay often behaves similarly t&/y, but is usually more
powerful when the EDHy(() deviates from the hypothesized distributib() in the tails.

Computation of the EDF statistid3y, Wy, andAy is typically accomplished using the
probability integral transformationj(l)(t) = F(uj(.l)(t)). In particular, ifF' is the true distribu-
tion function for the random variables (), then the random variables” (¢) are uniformly
distributed between 0 and 1, and the original test-of-fiDbees a test-of-fit between the EDF
for the transformed variablaé’) (t) and the standard uniform distribution function. Lef
denote theth order statistic of the values](.l)(t), - ,v](.N)(t), so thatyy < -+ < vy.
Then, the statistic® y, Wy, andAy are given by

[ [—1
Dy = max {mlax {N — U(Z)} ,mlax {U(l) — T}} ) (7-10)

N

Wy = 12n+z { 21_1} : (7-11)
=1

An (20 — 1) log vy + (2N + 1 — 20) log(1 — v())] - (7-12)

||Mz
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For the examples presented here, the vabjlé(st) are obtained by evaluating the chi-square
distribution function forg degrees of freedom at the NEES valmﬁé(t) for each targey at
each timet for simulationsl = 1,..., N. Proofs related to the probability integral transfor-
mation are found in [41, chapter 6] and Stuart and Ord [43j@ed.27].

7.2 TWO CROSSING TARGETS

In this example, two constant-velocity targets cross inahelane; that is, the two
targets share the sameg-position at some time.. (Such a scenario is possible, for instance,
when two aircraft cross paths at different altitudes.) Atdit = 0, targets 1 and 2 are at
xy-positions(1,0) and (2,0), with xy-velocities (0.05,2) and (—0.05, 2), respectively. It
follows that the targets cross paths at time= 10. A single measurement of each target’s
xy-position is obtained at each tinte= 1,..., 25, for a total of 50 observations over the
entire scenario. These measurements have a standardatewd.075 in each dimension.
The distance between the two targets in thdimension in units of measurement standard
deviation is shown in figure 1. For consistency with the agdion that a single measurement
of each target is obtained at each time, the mixing propastiq andn, are each set to 0.5
and held fixed for the simulation. Finally, the mean vectarthe prior distribution for each
target is taken to be the true position and velocity vectoeaxth target at timé = 0, so
thatn; = (1,0,0.05,2) andn, = (2,0, —0.05,2). The prior covariance and process noise
covariance matrices for each target are taken to be

T; = diag((1,1,0.1,0.1)) (7-13)

and
Qji = 107 diag((1,1,0.1,0.1)) (7-14)

for j = 1,2, andt = 0, ..., 24, respectively, wherdiag(v) is the diagonal matrix with the
elements of the vectaron the diagonal.

This simulation was run 100 times for each of four batch leagt = 25, 10, 5, and 1.
For each run, the NEES values (7-3) were computed twice, asiog the posterior observed
information matrix, that is, with

CiH(tt) = [Topy]a; o), (7-15)
and once using the posterior complete information mathniat is, with
CiH(tt) = [Toyx]a, i (7-16)

where[lopy |,y @and[le|x]p, ) denote the sub-blocks of the posterior observed and pos-
terior complete information matrices, respectively, agsed with the state estimafe(t|t).
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In each case, the average NEES values (7-4) over the 100 merescomputed, as well as the
K, CVM, and AD statistics (7-10), (7-11), and (7-12). The age NEES curves for the four
batch lengths are plotted in figures 2 through 5. The K, CVM, Abdcurves are plotted in
figures 6 through 9.

In figures 2 through 5, the horizontal solid line indicates thean of the chi-square
distribution with degrees of freedogm= 4; the area between the horizontal dashed lines indi-
cates the 95% acceptance region for the null hypothesi$. (IT4S clear from these plots that
the posterior complete information matriy x yields inconsistent estimates of estimation
error in the vicinity of the crossing. Indeed, the averageEBREEurves associated wily x
rise well above the acceptance regions near the crossiagitegs of batch length, indicating
overly optimistic estimates of estimation error; said &weotway, the error-covariance matri-
ces computed using the posterior complete informationirate too small in the vicinity of
the crossing, where the measurement-to-source assigumegrtainty is large. In this region,
the information lost to the missing data (measurementtoee assignments) is significant,
and the missing information term (the second term) in exgioey5-75) for the posterior ob-
served information matriXey is nonzero. From (5-75), it follows that the error-covagan
matrix computed using the posterior observed informati@trix /o)y is always at least as
large as the error-covariance matrix computed using theepos complete information ma-
trix I x. Hence, from (7-3) and (7-4), it follows that the average I$&dtirves computed
usinglg)y in figures 2 through 5 are always bounded above by those ceapiging/g x .

It is also clear from these figures that estimator consigteleteriorates with smaller
batch length, in the sense that more average NEES valuesifaitie of the acceptance region
as batch length decreases. This result in summarized i 1aklhich records the percentages
of the average NEES values for both targets and for all 25 katimpes that fall within the
95% acceptance region. The shaded boxes in this table nah&ipercentages associated
with the average NEES values computed using the postersgreéd information matrix.
The containment statistics for batch lengths of 25 and 1@cate that the inverse of the
posterior observed information matrix gives a consiststitr&te of estimation error for this
example; in both cases, 95.8% of the average NEES valuesitalh the 95% containment
region. The containment statistics drop by 4.1 and 10.4gme¢age points for batch lengths
of 5 and 1, respectively. Interestingly, the containmeatistics for the average NEES values
computed using the posterior complete information matiorease with decreasing batch
length. These results are recorded in the unshaded boxaslénlt. The reason for this trend
is not clear. In any event, these containment statisticaler@ys worse than the corresponding
statistics computed using the posterior observed infaomahatrix, and all are well below
the expected 95% containment level.
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Figures 6 through 9 show plots of the K, CVM, and AD statistisgumnctions of sam-
pling time for each of the four batch lengths. Recall that &t df estimator consistency
based on these statistics is one-sided; the area below tizehial dashed line in these plots
is the 95% acceptance region for the test. All of the resuisugsed above for the average
NEES curves hold for the K, CVM, and AD curves shown here, witle exception: the
curves for the K, CVM, and AD statistics computed using thegrog observed information
matrix Igy are not necessarily bounded above by those computed fromositerior com-
plete information matriXe x. Nevertheless, the containment statistics in table 1 atdithat
Ig)ﬁy is a consistent estimate of estimation error, wlﬁgg( is not. Of the three statistics, the
AD statistic is closest in behavior to the average NEES.
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Target Separation (in Standard Deviatons)

Figure 1. Distance Between Targets irtDimension in Units of Measurement Standard
Deviation for Crossing Targets Example
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Figure 2. Average NEES with 95% Acceptance Region for Crossing tsgExample with
Batch Length 25, Computed Using Posterior Complete Informatiblatrix (crosses) and
Posterior Observed Information Matrix (circles)
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Figure 3. Average NEES with 95% Acceptance Region for Crossing sExample with
Batch Length 10, Computed Using Posterior Complete Informatiblatrix (crosses) and
Posterior Observed Information Matrix (circles)
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Figure 4. Average NEES with 95% Acceptance Region for Crossing sExample with
Batch Length 5, Computed Using Posterior Complete Informatibfatrix (crosses) and
Posterior Observed Information Matrix (circles)
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Figure 5. Average NEES with 95% Acceptance Region for Crossing sgExample with
Batch Length 1, Computed Using Posterior Complete Informatibtatrix (crosses) and
Posterior Observed Information Matrix (circles)
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Example with Batch Length 25, Computed Using Posterior Completéokmation Matrix

(crosses) and Posterior Observed Information Matrix (cies)
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(a) Target 1. (b) Target 2.

Figure 7. K, CVM, and AD Statistics with 95% Acceptance Regions for §smg Targets
Example with Batch Length 10, Computed Using Posterior Completéokmation Matrix
(crosses) and Posterior Observed Information Matrix (cies)
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Kolmogorov Statistic for Target 1 with 95% Acceptance Region
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Kolmogorov Statistic for Target 2 with 95% Acceptance Region
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(a) Target 1.

Time

(b) Target 2.

Figure 8. K, CVM, and AD Statistics with 95% Acceptance Regions for §smg Targets
Example with Batch Length 5, Computed Using Posterior Completéoimmation Matrix
(crosses) and Posterior Observed Information Matrix (cies)
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Kolmogorov Statistic for Target 1 with 95% Acceptance Region

Kolmogorov Statistic for Target 2 with 95% Acceptance Region
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Figure 9. K, CVM, and AD Statistics with 95% Acceptance Regions for §smg Targets
Example with Batch Length 1, Computed Using Posterior Completéoimation Matrix
(crosses) and Posterior Observed Information Matrix (cies)
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Table 1. Percentage of NEES, K, CVM, and AD Values That Fall Within &in Respective
95% Acceptance Regions for the Crossing Targets Example (The &ngl second rows for
each statistic correspond to use of the posterior complatd posterior observed

information matrices, respectively, to compute the statg

o Batch Length
Statistic 25 | 10 5 1
64.6| 70.8| 70.8| 77.1
NEES 95.8/ 95.8| 91.7| 85.4
68.8| 64.6| 66.7 | 75.0
K 91.7| 87.5| 85.4| 85.4
68.8| 70.8| 70.8| 79.2
CVM 97.9| 91.7| 89.6 | 89.6
66.7| 68.8| 66.7 | 75.0
AD 97.9]| 95.8| 91.7 | 89.6
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7.3 SINGLE TARGET IN CLUTTER

In this example, a single constant-velocity target trairethe zy-plane, with non-unity
probability of detection”, and non-zero probability of false alarf)-4. In particular, aPp
of 0.9 is assumed fixed and known. Furthermore, it is assuhredat each sampling time
n.(t) uniformly distributed clutter points are observed in a sguaverage region centered at
the true position of the target and with sides of ler@fih, wherer = 0.075 is thexy-position
measurement standard deviation in each dimension fromréweopis example. The number
of clutter pointsn.(t) is assumed to be Poisson distributed with magvi = 4, whereV'
is the volume of the coverage region (in this casex 1.5 = 2.25), and\. is the clutter
density in this regionX. = 1.78 in this case). Thus, on average, four uniformly distributed
clutter points are expected inl& x 1.5 region about the true target position; the probability
of observing at least one clutter point in this regio®isb{n.(t) > 0} = 0.98.

At time ¢ = 0, the target is aty-position(1,0) with xy-velocity (0,2). At each time
t =1,...,55, at most one measurement of targegtposition, and.(¢) clutter points (false
measurements) are obtained, each distributed as desealiloee. The mean vector for the
prior distribution of the target is taken to be the true positand velocity vector of the target
attimet = 0, so thaty; = (1,0,0, 2). The prior covariance matrix for the target is taken to be
1 x 10~2 times the matrix (7-13), and the process noise covarian¢exnigtaken to be the
matrix (7-14). The prior distribution for the target statdime ¢, is made more informative
(via the multiplicative factorl x 10~2) in this example to compensate for the well-known
difficulty of initializing a tracker in clutter. There are waus other ways to address this
problem, but they are outside the scope of this report.

The PMHT model as described in section 5.2 must be modifiect¢oumt for false
alarms; that is, a clutter model must be added to accounbtiemations that do not originate
from a target. This is accomplished as described in Gaunait ] by adding a uniform den-
sity function to the mixture density function for each obs#ion. The impact of this clutter
model on the update equations and information matrix coatjuts for the linear Gauss-
Markov mixture is primarily confined to the conditional maesment-to-source assignment
probabilities. Additionally, some of the information matexpressions (5-47) through (5-57)
must change to reflect the addition of the clutter sourceéareasurement mixture model.
These changes are listed in appendix C. Finally, for comsgtevith the assumption that
at most one measurement originates from the target, thettarixing proportionr; is set
to 0.18, according to expression (C-12), which accountshermtrobability of detectiorp
and expected number of false alarm$ . The clutter mixing proportion, denoted, is then
1 —m = 0.82, and is held fixed for the simulation.
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This simulation was run 100 times for each of the four batcigtlesp = 25, 10, 5,
and 1. As for the crossing targets example, average NEE®wvaloud the K, CVM, and AD
statistics were computed over these runs for these batgthlensing both the posterior com-
plete information matrix and the posterior observed infation matrix. The average NEES,
K, CVM, and AD curves are plotted in figures 10 through 13. Itlsac from these plots
that, again, the posterior complete information mafix, yields inconsistent estimates of
estimation error. On the other hand, the posterior obseinedmation matrix/ey gives
consistent estimates in this example, at least for largeigimdatch length. These results
are summarized in table 2, which records the percentagegechge NEES, K, CVM, and
AD values that fall within their respective 95% acceptaregions. As for the crossing tar-
gets example, the values in the unshaded boxes correspane statistics computed using
the posterior complete information matrix; the values ia $haded boxes correspond to the
statistics computed using the posterior observed infaonahatrix. For the percentages in
this table, only those statistics computed after samplingt = 5 were counted, since each
of the statistics is initially skewed by the combination ofarmative prior information and
good initialization. A randomized initialization schemewid perhaps have eliminated this
trend, but the present scheme was deemed sufficient for ¢énistration. In any event,
the containment statistics for batch length 25 indicatelgé, is a consistent estimate of the
error-covariance matrix for this simulation. Again, as foe crossing targets example, the
AD statistic is closest in behavior to the average NEES.
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Average NEES for Target 1 with 95% Acceptance Region
T T T T T T

T T
—— Complete
—&— Observed

Average NEES for Target 1 with 95% Acceptance Region
T T T T T T

6.5

3 B 3 4
—— Complete
—©&— Observed
25 I I I I I I I I I I 25 I I I I I I I I T T
5 10 15 20 25 30 35 40 45 50 55 5 10 15 20 25 30 35 40 45 50 55
Time Time
@) 5= 25. (b) 5= 10.

Figure 10. Average NEES with 95% Acceptance Region for Single Tetrop Clutter
Example with Batch Lengths 25 and 10, Computed Using Posterior @tete Information
Matrix (crosses) and Posterior Observed Information Matr{circles)

Average NEES for Target 1 with 95% Acceptance Region
T T T T T T

T T
—<— Complete
—S— Observed

Average NEES for Target 1 with 95% Acceptance Region
T T T T T T

T T
—— Complete
—©— Observed

6.5

6.5

25 I I I I I I I I I I 25 I I I I I I I I I I
5 10 15 20 25 30 35 40 45 50 55 5 10 15 20 25 30 35 40 45 50 55

Time Time

(@ p=5. (b) 5=1.

Figure 11. Average NEES with 95% Acceptance Region for Single Tetron Clutter
Example with Batch Lengths 5 and 1, Computed Using Posterior Coet@linformation
Matrix (crosses) and Posterior Observed Information Matr{circles)
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Kolmogorov Statistic for Target 1 with 95% Acceptance Region

Kolmogorov Statistic for Target 1 with 95% Acceptance Region

35 T T T T T T T T

Cramer-von Mises Statistic for Target 1 with 95% Acceptance Region

Anderson-Darling Statistic for Target 1 with 95% Acceptance Region
25 T T T T T T T T

Anderson-Darling Statistic for Target 1 with 95% Acceptance Region

20

Figure 12. K, CVM, and AD Statistics with 95% Acceptance Region fon@e Target in
Clutter Example with Batch Lengths 25 and 10, Computed Using PasteComplete
Information Matrix (crosses) and Posterior Observed Infaration Matrix (circles)
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Kolmogorov Statistic for Target 1 with 95% Acceptance Region

Kolmogorov Statistic for Target 1 with 95% Acceptance Region

Cramer-von Mises Statistic for Target 1 with 95% Acceptance Region

Cramer-von Mises Statistic for Target 1 with 95% Acceptance Region

Anderson-Darling Statistic for Target 1 with 95% Acceptance Region
T

Anderson-Darling Statistic for Target 1 with 95% Acceptance Region

20

(b) p=1.

Figure 13. K, CVM, and AD Statistics with 95% Acceptance Region fon@e Target in
Clutter Example with Batch Lengths 5 and 1, Computed Using PostelComplete
Information Matrix (crosses) and Posterior Observed Infaration Matrix (circles)
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Table 2. Percentage of NEES, K, CVM, and AD Values That Fall Within &in Respective
95% Acceptance Regions for the Single Target in Clutter Exampl&é¢ first and second
rows for each statistic correspond to use of the posterior qbete and posterior observed

information matrices, respectively, to compute the statg

o Batch Length
Statistic o5 10 5 1
00 | 0O| 00| 0.0
NEES 96.0 | 84.0| 46.0| 0.0
00 | 20| 6.0 | 8.0
K 98.0 | 88.0| 74.0| 26.0
00 | 20| 20| 6.0
VM 100.0 92.0| 76.0| 16.0
00 | 0O| 20| 4.0
AD
96.0 | 84.0| 66.0| 6.0

63(64 blank)






8. CONCLUSIONS

8.1 SUMMARY OF FINDINGS

An analytical approach for computing the observed inforomatnatrix for an important
class of mixture models, called dynamic mixtures, is dgwetbin this report. Dynamic
mixtures are useful models for data originating from a nundfedistinct moving sources.
Multiple target tracking is one application of these mogBMNIHT is the primary example of
a dynamic mixture-based approach to multiple target tragkin the basic PMHT model, a
Gaussian mixture is used to describe the distribution ofeasurements from each target,
and a linear Gauss-Markov process model is used to desbeldarget dynamics.

An important finding of this report is the precise statidtiogéerpretation of the error-
covariance matrices for the PMHT track estimates in terntisebbserved information matrix
computations for these estimates. In particular, it is shtvat the error-covariance matri-
ces obtained from the Kalman smoothing filter for each tastge sequence at the final EM
iteration are the diagonal blocks of the inverse of the pasteomplete information matrix
for each sequence. Therefore, these error-covariancécesprovide only part of the infor-
mation required to compute error-covariance matricesherdtate estimates. In short, the
error-covariance matrices obtained from the Kalman smogtfiters do not account for the
information lost to the missing data, that is, the missing@sueement-to-target assignments.

Another important finding of this report is the impact of m@&snent-to-source as-
signment uncertainty on estimator consistency. Spedifidal two common target tracking
scenarios (two crossing targets, and a single target itecjuit is shown that the posterior
complete information matrix yields inconsistent estinrsabé estimation error when there is
significant assignment uncertainty, while the posteri@enbed information matrix gives con-
sistent estimates (for sufficient batch length). In eachage, the standard chi-square test for
the distribution of the average NEES is used to test for egbmconsistency. Additionally,
new tests for estimator consistency based on the EDF of tieS\#te introduced; these tests
are shown to produce results comparable to those of theasthNEES test.

8.2 ALTERNATIVE APPROACHES

While Louis’s approach for computing the observed infororatnatrix when using the
EM method can be applied to any incomplete data probleme tner almost surely problems
for which the required expressions, though based on comgbgha statistics, are difficult to
derive analytically or compute numerically, or both. Foegh problems, the supplemented
EM (SEM) method of Meng and Rubin [5] is an attractive altein@at Their method gener-
alizes an observation made by Smith [44] in his discussidDesfipster et al. [1]. Based on
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his analysis of the standard errors of a simple example im gaper, Smith alludes to the
following general relationship between the observed data-@ariancev, and the complete
data error-variance, of the maximum likelihood estimate for the scalar paraméter

1
1—r

Ve, (8-1)

Vo =

where, using the language of this repartjs the inverse of the observed information matrix
(a scalar in this case),. is the inverse of the complete information matrix, ands the
rate of convergence of the EM method which, for large valudethe iteration indexk, is

approximated by
gl+1) _ g(k)

k) _ pk—1)" (8-2)

T =

Thus, the observed data error-variance is obtained byimjl#te complete data error-variance
by the factorl /(1 —r). Meng and Rubin rewrite (8-1) in the statistically more apipggorm

vV, = V. + Av, (8-3)

where
,

:1—7"

is interpreted as the increase in error-variance due to tegimg data. Among the contribu-

Av Ve (8-4)

tions of their paper are the analogous matrix version of)(&3d computations for the matrix
versions ofv, andr. Computation of the rate-of-convergence mairiivolves numerical
differentiation of the implicit mapping\t : Q@ — Q from the parameter spade to itself
defined by the EM method such that

o+ — M%) for k=0,1,2,.... (8-5)

However, unlike approaches such as Carlin’s [45] that useenigal differentiation to obtain
the error-covariance matrix directly from the observeadatpport function, SEM uses only
numerical differentiation to obtain the increase due tortfissing data to be added to the
complete data error-covariance matrix. Hence, Meng andrRelaim that SEM is typically
more stable because the correction obtained by numeritadettiation is added to the com-
plete data error-covariance matrix, which often can beinbthanalytically and is usually
the dominant term. Meng and Rubin do not include mixture modehong the examples
in their paper, although there is no impediment to using SEMtiis problem. The use of
SEM for dynamic mixture models, and a comparison of this aggin with Louis’s approach
developed for these models in this report, are left as fuiumex.
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8.3 FUTURE INVESTIGATIONS

Several topics for future investigation have already beepgsed. These include:

1. The application of the SEM method to dynamic mixture medahd a comparison
of this method for computing the error-covariance matriwliouis’s approach.

2. An examination of the accuracy of the observed infornmatiwatrix for dynamic
mixtures as a function of sample size, and a comparison afttserved information matrix
with the Fisher information matrix for these models.

3. The exploration of efficient methods for computing thesirse of the observed infor-
mation matrix for dynamic mixture models, including suboyal procedures for computing
the error-covariance matrix for large problems.

Additionally, there are at least two more topics worth purgu

The other contribution of Louis’s paper [3] is a method focelerating convergence of
the EM iterations using the observed information and cotepigormation matrices. Specif-
ically, Louis shows that the updated estimate @t thekth EM iteration can be refined in
place via the following step:

0% = 0% 4+ 17" (y; 0% I (a0 (0*) — g1y, (8-6)

The refinement™ is an improvement over the updaté) in the sense that the former is
closer tof = () than the lattet. Application of this acceleration method to the dynamic
mixture models presented in this report would appear toraggsitforward.

Finally, it is proposed that the observed information nxatomputations developed
here be extended to dynamic mixture models for grouped andated data. In practice, data
are often grouped into a finite number of observation cetlseeiintentionally (for example,
to simplify data collection) or unintentionally, perhapsedto limitations of the data collec-
tion process. Additionally, if the number of observationsan observations cell cannot be
reported for any reason, the grouped data are said to beatethdn any event, grouping and
truncating samples introduces additional missing data tim estimation problem, namely,
the sample locations within the observed cells, and the eusndf samples and their locations
in the truncated cells. Consequently, the EM method is a abpproach to maximum like-
lihood estimation for these problems. This approach id¢ehy several authors, including
Dempster et al. [1] and McLachlan and Jones [46]. The latiias explicitly treat finite
mixture models for grouped and truncated data.

*There is a transposition error between the matrk;esand[;l in this expression in Louis’s paper [3, expression (5.3)je EBrror is
corrected by Meilijson in [35, expression (11)].
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Recent work has been done on estimation for stochastic dgnaimiure models for
grouped and truncated data. In particular, Luginbuhl [4d] Buginbuhl and Willett [48, 49]
apply the PMHT model to a histogram representation of disdrme Fourier transform data
to estimate the parameters of general frequency moduléjedls in noise. Of particular
interest to this discussion is a derivation in [47] of theh@isinformation matrix for the
parameters in a univariate Gaussian mixture approximati@one-dimensional histogram.
This result is important to this work, as it indicates thegoial existence of a closed-form
Craner-Rao lower bound on estimation error for the stochasti@adya mixture model, and
the PMHT model in particular, for grouped and truncated datance, this result should
provide an opportunity to compare, in the spirit of Efron &hakley [4], the relative accuracy
of the observed information matrix versus the Fisher infation matrix for dynamic mixture
models and, by extension, for multiple target tracking.

68



APPENDIX A
APPROXIMATION TO THE OBSERVED INFORMATION MATRIX

Use of the empirical Fisher information matrix (3-21) as apraximation to the ob-
served information matrix for independent and identicdilstributed data is justified in the
following sense. (The argument presented here is a detadexion of the argument in
McLachlan and Krishnan [50]). Consider the information nxaf8-5) for independent and
identically distributed observations:

"~ 9Ny (yi; 0)
Iy(y;0) = — —— L A-1
Y<y7 ) — 86 aeT Y ( )
where the support functions, in this case are all the same function. Recalling thaty;; 6) =
log fv; (v;; #) and manipulating the derivatives on the right-hand sidé\ef) yields

_Z Py (yir0)  _ _zn: 2 1 Ofv(y:0)
aeaeT £ 00 | fr(ys0) 007
_ z": 1 O0fvi(ys0) 0fviyis0) 1 0*fnlyisf)
[y (yis0) 00 07 fy,(yi:0) 00007

" 8)\y(y,,9 a)\y y“ 1 8 fy. (yZ,Q)
= - - . (A2

; 00 00T Z fvi(yi;0) 00007 (A-2)
Now, the expected value df (y; 0) evaluated a@*, the true value of, is the Fisher infor-
mation matrix/(0*). But the second term in the previous expression has zero &tjoec
Indeed,

- 1 9 fy(Y;0)
B\> w6 o006

Z/ a2]"11/ yz, '
8986T vi

= 07 (A_3)

where interchangeability of derivatives and integralsleen assumed. Therefore, insofar as
0 — 6% andly (y;6) — I1(6*) asn — oo, it follows that for large sample sizes

) - 32)\1@(%9) - 8>\n(%‘59)a)\1@(3ﬁ;9)
Ly 0) = = 90 00T ~D 90 90T

i=1 0=  i=1

= L(y;0). (A-4)
=0

See McLachlan and Krishnan for examples of this approxmnatand Redner and Walker
[34] and Meilijson [35] for uses of the empirical observefbimation matrix to accelerate
convergence of the EM method.
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APPENDIX B
INVERSE OF THE GAUSS-MARKQOV PRIOR COVARIANCE MATRIX

The equality of the matrix .., given by expression (5-44), and the inverse of the
Gauss-Markov prior covariance matrX given by expression (5-65) and recursions (5-67)
and (5-68), is established by the following theorem:

Theorem. Let
- -,

Qk
Qkflu

., Q;_1 are positive-definite matrices, let

k=0,

kE=1,...,t,
wherel’; Qq, Q1, . .

I, k=0,
I =
Frpatler Byl + Qrer, k=1, ¢,
and let
Y =FlL Qi Ferir, k=0,...,t—1.
Furthermore, let
Ty FOFITO FOFITOFQT1 FOFITO e FtTt_l
Fiol I Iy F) INVOUEEEY S
P = Fo Fiol'y Iy Iy F2F32“'Ft-,l;—1 ;
_Ft,tfl o Fly Fygoq - ForI'y Fyyq - Faol'y Iy i
and let
(—Q¢'+ Mo —FLQ7 0 - 0]
—Qlem Qfl + 71, _FZEQ;1 :
J — O . . . 0
: ~Q  Fiovie Qi+ Y —FtTt_1Qt_1
.0 e 0 —Q; ' Fri Q'

Then, for each positive integérthe matrix equality®?~! = .J holds.

Proof. For a given positive integer, use the Gauss-Jordan method to reduce the concate-
nated matriX P, I] to the matrix[/, P~'], wherel is the compatibly sized identity matrix. In
particular, letG") denote the result of row reduction after thie step, so that:¥) = [P, I]
andG®) = [I, P~!] for someL > 0. Moreover, let-” denote the:th row of G*. Then, the
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reduction of the rectangular matri®, I] to the matrix[/, P~!] terminates in three steps, as
given by the following row recursions:

(0) o
ORI R k=0,
L=
Fk,k—ﬂ“;io_)l —T,(go), k=1,...t,
1 A ~— 1
r@ TIS: - QkFl;r-H,ka—&l-lrl(c—gl? k=0,....,t—1,
ko 1
rl(g )7 k’ = 1,
T,(Cg) = —Qk_,lr,(f), k=0,...,t

The recursionS*,(j) andr,(f) produce all zeros below and above the diagonals of the &ift-h

partitions of G(!) and G2, respectively; finally, the recursiond” produce ones along the
diagonal of the left-half partition of'®), leavingG® = [I, P~!]. Inspection of the right-half
partition of this matrix reveals the identify~! = .J.



APPENDIX C
ADDING A CLUTTER MODEL TO PMHT

The changes required to add a clutter distribution to the PMibdel discussed in
section 5.2 are presented in this appendix.

Let D, denote the sensor coverage region at sampling tjraed letV/ (D,) denote the
volume of this region. In the example of section 7.3, the cage regionD; is the square
centered at the true position of the target at tira@d with sides of lengtR0r, wherer is the
zy-position measurement standard deviation, sottHd®,) = 400r%. Letu(s; G) denote the
uniform density function with suppo¢t, so that

u(s:C) = %, if s e, (Cc-1)
0, otherwise
and letr,,.; denote the mixing proportion associated with the clutterse. Then, with
the inclusion of this clutter model, the observed datailiied function (5-36) for the linear
Gauss-Markov dynamic mixture becomes

T ne m+1
friewl0) = TTTID. = fi(wal6), (C-2)
t=1 i=1 j=1
where
¢<yti’M'tﬂ'taR't)> .7: 17"'7m>
£i(yel0) = e (C-3)
w(yis Dy), Jj=m+1

Also, the constraint (4-13) must be expanded to include tixenpproportionr,, ;. The im-
pact of this clutter model on the update equations and irdtion matrix computations for the
linear Gauss-Markov mixture is for the most part confinech® ¢onditional measurement-
to-source probabilities (5-39). These probabilities Imeepat thekth EM iteration,

k
w __m fial6®) -
jti = m+1 (k) 19 )
o T Ji(yl0%)
forj = 1,...,m + 1. Additionally, some of the information matrix computats(b-47)

through (5-57) must change to reflect the addition of thet@hgource to the mixture model
for the measurements. These changes are as follows: expré¢ssi7) becomes

<Sti>7'rj = Wjti [Tj — Wit 1,40/ Tmg1,  J=1,...,m; (C-5)

expressions (5-49) and (5-51) become

2 2 -
wjti/ﬂ—j + wm+17ti/7rm+1> J=1

<Bti>7rj7rl - ]7l =1l...,Mm, (C-G)

wm—i—l,ti/ﬂ-gm—i-lv J#1,
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and
(Bti),wl =0, Ll=1...,m, (C-7)

respectively; expressions (5-52) and (5-54) become, otispby,

2 2 -
wjti/ﬂ-j + Wit/ M1, J =1,

(S Sy ) mym = ,l=1,....m, (C-8)
W10/ Ty 1 J#1,
and
(ST = €8 ® “7’;; (i — M) "R My, =1, m; (C-9)
finally, expressions (5-55) and (5-57) become,
Vo Vo de@)} = 0,  jl=1,...,m, (C-10)
Vo AV e} =0,  4l=1..,m (C-11)

To be consistent with the standard tracking assumptionahatost one observation
at each sampling time is associated with each target, th@nolg heuristic is used to set
the target mixing proportions given fixed probability of eeion Pp,, clutter density\., and
sensor coverage region voluriie(assumed here to be constant):

Pp
=——— j=1,...,m. C-12
ﬂ.] m _"_ Acv7 j Y 7m ( )
The clutter mixing proportion is then,,,; = 1 — 7, — --- — m,,. This heuristic is slightly

different than the one proposed by Rago et al. [38] and Widletl. [39]. In particular, the
denominator in their expression is a function of the numbesf observations at time In
either case, experience indicates that PMHT algorithmoperénce is relatively insensitive
to precise values of the mixing proportions, and that royggreximations such as (C-12) are
usually adequate.
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